Package: scTensor 2.17.0

Koki Tsuyuzaki

scTensor: Detection of cell-cell interaction from single-cell RNA-seq dataset by tensor decomposition

The algorithm is based on the non-negative tucker decomposition (NTD2) of nnTensor.

Authors:Koki Tsuyuzaki [aut, cre], Kozo Nishida [aut]

scTensor_2.17.0.tar.gz
scTensor_2.17.0.zip(r-4.5)scTensor_2.17.0.zip(r-4.4)scTensor_2.17.0.zip(r-4.3)
scTensor_2.17.0.tgz(r-4.4-any)scTensor_2.17.0.tgz(r-4.3-any)
scTensor_2.17.0.tar.gz(r-4.5-noble)scTensor_2.17.0.tar.gz(r-4.4-noble)
scTensor_2.17.0.tgz(r-4.4-emscripten)scTensor_2.17.0.tgz(r-4.3-emscripten)
scTensor.pdf |scTensor.html
scTensor/json (API)
NEWS

# Install 'scTensor' in R:
install.packages('scTensor', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • GermMale - The matrix which is used as test data of scTensor.
  • labelGermMale - The vector contains the celltype information and color scheme of GermMale
  • m - The gene-wise mean vector of Quartz-Seq data.
  • tsneGermMale - The result of Rtsne against GermMale
  • v - The gene-wise variance vector of Quartz-Seq data.

On BioConductor:scTensor-2.17.0(bioc 3.21)scTensor-2.16.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

dimensionreductionsinglecellsoftwaregeneexpression

4.18 score 2 scripts 217 downloads 1 mentions 8 exports 225 dependencies

Last updated 23 days agofrom:dceaf02b39. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winWARNINGOct 31 2024
R-4.5-linuxWARNINGOct 31 2024
R-4.4-winWARNINGOct 31 2024
R-4.4-macWARNINGOct 31 2024
R-4.3-winWARNINGOct 31 2024
R-4.3-macWARNINGOct 31 2024

Exports:cellCellDecompcellCellRankscellCellReportcellCellSettingcellCellSimulategetParamnewCCSParamssetParam<-

Dependencies:abindannotateAnnotationDbiAnnotationForgeAnnotationHubapeaplotaskpassassertthatbackportsbase64encBHBiobaseBiocFileCacheBiocGenericsBiocManagerBiocParallelBiocStyleBiocVersionBiostringsbitbit64bitopsblobbookdownbslibcacachemcallrCategoryccTensorcheckmateclassclassIntcliclustercodetoolscolorspacecommonmarkconcavemancowplotcpp11crayoncrosstalkcurldata.tableDBIdbplyrDelayedArraydendextenddigestDOSEdotCall64dplyre1071eggenrichplotentropyevaluatefansifarverfastmapfastmatchfdrtoolfgseafieldsfilelockfontawesomeforeachformatRfsfutile.loggerfutile.optionsgclusgenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggforceggfunggnewscaleggplot2ggplotifyggraphggrepelggtangleggtreeglueGO.dbGOSemSimGOstatsgraphgraphitegraphlayoutsgridExtragridGraphicsGSEABasegsongtableheatmaplyhexbinhighrhtmltoolshtmlwidgetshttrigraphIRangesisobanditeratorsjquerylibjsonliteKEGGRESTKernSmoothknitrlabelinglambda.rlaterlatticelazyevallifecyclemagrittrmapsmarkdownMASSMatrixMatrixGenericsmatrixStatsmemoiseMeSHDbimeshrmgcvmimemisc3dmunsellnlmennTensoropenssloutlierspatchworkpermutepillarpkgconfigplogrplot3DplotlyplotrixplyrpngpolyclipprocessxpromisesproxypspurrrqapqvalueR.methodsS3R.ooR.utilsR6rappdirsRBGLRColorBrewerRcppRcppArmadilloRcppEigenRCurlreactome.dbReactomePAregistryreshape2RgraphvizrlangrmarkdownRSQLiterTensors2S4ArraysS4VectorssassscalesscatterpieschexseriationsfSingleCellExperimentsnowspamSparseArraystringistringrSummarizedExperimentsurvivalsyssystemfontstagcloudtibbletidygraphtidyrtidyselecttidytreetinytextreeioTSPtweenrUCSC.utilsunitsutf8V8vctrsveganviridisviridisLitevisNetworkwebshotwithrwkxfunXMLxtableXVectoryamlyulab.utilszlibbioc

Detection and visualization of cell-cell interactions using LRBase and scTensor

Rendered fromscTensor.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2021-12-16
Started: 2018-06-27

Roadmap to prepare the input matrix for scTensor

Rendered fromscTensor_1_Data_format_ID_Conversion.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2021-10-18
Started: 2019-06-19

How to interpret the HTML report generated by cellCellReport function

Rendered fromscTensor_2_Report_Interpretation.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2020-09-15
Started: 2019-06-19

How to perform CCI simulation by cellCellSimulate function

Rendered fromscTensor_3_CCI_Simulation.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2020-09-15
Started: 2019-06-19

How to reanalyze the results of scTensor

Rendered fromscTensor_4_Reanalysis.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2021-10-18
Started: 2019-10-23

Readme and manuals

Help Manual

Help pageTopics
Detection of cell-cell interaction from single-cell RNA-seq dataset by tensor decompositionscTensor-package scTensor
Class "CCSParams"CCSParams-class
Performing scTensorcellCellDecomp cellCellDecomp,SingleCellExperiment-method
Rank estimation of the CCI-tensorcellCellRanks cellCellRanks,SingleCellExperiment-method
HTML report of the result of scTensorcellCellReport cellCellReport,SingleCellExperiment-method
Parameter setting for scTensorcellCellSetting cellCellSetting,SingleCellExperiment-method
Parameter Simulate for scTensorcellCellSimulate cellCellSimulate,SingleCellExperiment-method
The matrix which is used as test data of scTensor.GermMale
Get a parametergetParam getParam,CCSParams-method
The vector contains the celltype information and color scheme of GermMalelabelGermMale
The gene-wise mean vector of Quartz-Seq data.m
New ParamsnewCCSParams
Set a parametersetParam setParam,CCSParams,ANY-method setParam,CCSParams-method setParam<- setParam<-,CCSParams,ANY-method setParam<-,CCSParams-method
The result of Rtsne against GermMaletsneGermMale
The gene-wise variance vector of Quartz-Seq data.v