Package: ramwas 1.31.0
ramwas: Fast Methylome-Wide Association Study Pipeline for Enrichment Platforms
A complete toolset for methylome-wide association studies (MWAS). It is specifically designed for data from enrichment based methylation assays, but can be applied to other data as well. The analysis pipeline includes seven steps: (1) scanning aligned reads from BAM files, (2) calculation of quality control measures, (3) creation of methylation score (coverage) matrix, (4) principal component analysis for capturing batch effects and detection of outliers, (5) association analysis with respect to phenotypes of interest while correcting for top PCs and known covariates, (6) annotation of significant findings, and (7) multi-marker analysis (methylation risk score) using elastic net. Additionally, RaMWAS include tools for joint analysis of methlyation and genotype data. This work is published in Bioinformatics, Shabalin et al. (2018) <doi:10.1093/bioinformatics/bty069>.
Authors:
ramwas_1.31.0.tar.gz
ramwas_1.31.0.zip(r-4.5)ramwas_1.31.0.zip(r-4.4)ramwas_1.31.0.zip(r-4.3)
ramwas_1.31.0.tgz(r-4.4-x86_64)ramwas_1.31.0.tgz(r-4.4-arm64)ramwas_1.31.0.tgz(r-4.3-x86_64)ramwas_1.31.0.tgz(r-4.3-arm64)
ramwas_1.31.0.tar.gz(r-4.5-noble)ramwas_1.31.0.tar.gz(r-4.4-noble)
ramwas_1.31.0.tgz(r-4.4-emscripten)ramwas_1.31.0.tgz(r-4.3-emscripten)
ramwas.pdf |ramwas.html✨
ramwas/json (API)
NEWS
# Install 'ramwas' in R: |
install.packages('ramwas', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/andreyshabalin/ramwas/issues
On BioConductor:ramwas-1.31.0(bioc 3.21)ramwas-1.30.0(bioc 3.20)
dnamethylationsequencingqualitycontrolcoveragepreprocessingnormalizationbatcheffectprincipalcomponentdifferentialmethylationvisualization
Last updated 2 months agofrom:d24c1d2fce. Checks:OK: 7 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 30 2024 |
R-4.5-win-x86_64 | NOTE | Nov 30 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 30 2024 |
R-4.4-win-x86_64 | OK | Nov 30 2024 |
R-4.4-mac-x86_64 | OK | Nov 30 2024 |
R-4.4-mac-aarch64 | OK | Nov 30 2024 |
R-4.3-win-x86_64 | OK | Nov 30 2024 |
R-4.3-mac-x86_64 | OK | Nov 30 2024 |
R-4.3-mac-aarch64 | OK | Nov 30 2024 |
Exports:cachedRDSloadcolSumsSqestimateFragmentSizeDistributionfindBestNpvsgetCpGsetALLgetCpGsetCGgetDataByLocationgetLocationsgetMWASgetMWASandLocationsgetMWASrangeinjectSNPsMAFinsilicoFASTQisAbsolutePathmadeBEDmadeBEDgraphmadeBEDgraphRangemadeBEDrangemakefullpathmanPlotFastmanPlotPreparemat2colsorthonormalizeCovariatesparameterDumpparameterPreprocessparametersFromFilepipelineProcessBamplotCVcorsplotFragmentSizeDistributionEstimateplotPCvaluesplotPCvectorsplotPredictionplotROCprocessCommandLinepvalue2qvalueqcmeanqqPlotFastqqPlotPrepareramwas0createArtificialDataramwas1scanBamsramwas2collectqcramwas3normalizedCoverageramwas4PCAramwas5MWASramwas6annotateTopFindingsramwas7ArunMWASesramwas7BrunElasticNetramwas7CplotByNCpGsramwas7riskScoreCVramwasAnnotateLocationsramwasParametersramwasSNPsrowSumsSqsubsetCoverageDirByLocationtestPhenotype
Dependencies:abindAnnotationDbiaskpassBHBiobaseBiocFileCacheBiocGenericsBiocParallelbiomaRtBiostringsbitbit64bitopsblobcachemclicodetoolscpp11crayoncurlDBIdbplyrDelayedArraydigestdplyrfansifastmapfilelockfilematrixforeachformatRfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicAlignmentsGenomicRangesglmnetgluehmshttrhttr2IRangesiteratorsjsonliteKEGGRESTKernSmoothlambda.rlatticelifecyclemagrittrMatrixMatrixGenericsmatrixStatsmemoisemimeopensslpillarpkgconfigplogrpngprettyunitsprogresspurrrR6rappdirsRcppRcppEigenRhtslibrlangRsamtoolsRSQLiteS4ArraysS4VectorsshapesnowSparseArraystringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselectUCSC.utilsutf8vctrswithrxml2XVectorzlibbioc
RaMWAS Overview
Rendered fromRW1_intro.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2018-08-30
Started: 2016-12-12
CpG sets
Rendered fromRW2_CpG_sets.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2018-03-09
Started: 2017-04-19
BAM Quality Control Measures
Rendered fromRW3_BAM_QCs.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2017-12-21
Started: 2016-12-12
Joint Analysis of Methylation and Genotype Data
Rendered fromRW4_SNPs.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2017-12-24
Started: 2017-04-19
Analyzing Illumina Methylation Array Data in RaMWAS
Rendered fromRW5a_matrix.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2019-02-18
Started: 2019-02-18
Analyzing Data from Other Methylation Platforms or Data Types
Rendered fromRW5c_matrix.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2019-02-18
Started: 2019-02-18
RaMWAS Parameters
Rendered fromRW6_param.Rmd
usingknitr::rmarkdown
on Nov 30 2024.Last update: 2018-03-09
Started: 2017-04-19