Package: qsvaR 1.11.1
qsvaR: Generate Quality Surrogate Variable Analysis for Degradation Correction
The qsvaR package contains functions for removing the effect of degration in rna-seq data from postmortem brain tissue. The package is equipped to help users generate principal components associated with degradation. The components can be used in differential expression analysis to remove the effects of degradation.
Authors:
qsvaR_1.11.1.tar.gz
qsvaR_1.11.1.zip(r-4.5)qsvaR_1.11.1.zip(r-4.4)qsvaR_1.11.1.zip(r-4.3)
qsvaR_1.11.1.tgz(r-4.4-any)qsvaR_1.11.1.tgz(r-4.3-any)
qsvaR_1.11.1.tar.gz(r-4.5-noble)qsvaR_1.11.1.tar.gz(r-4.4-noble)
qsvaR_1.11.1.tgz(r-4.4-emscripten)qsvaR_1.11.1.tgz(r-4.3-emscripten)
qsvaR.pdf |qsvaR.html✨
qsvaR/json (API)
NEWS
# Install 'qsvaR' in R: |
install.packages('qsvaR', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/lieberinstitute/qsvar/issues
- degradation_tstats - Degradation time t-statistics
- rse_tx - Example of RSE object with RNA-seq transcript quantification data
- transcripts - Transcripts for Degradation Models
On BioConductor:qsvaR-1.11.1(bioc 3.21)qsvaR-1.10.0(bioc 3.20)
softwareworkflowstepnormalizationbiologicalquestiondifferentialexpressionsequencingcoveragebioconductorbraindegradationhumanqsva
Last updated 1 months agofrom:55f85137fa. Checks:1 OK, 6 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 10 2025 |
R-4.5-win | NOTE | Jan 10 2025 |
R-4.5-linux | NOTE | Jan 10 2025 |
R-4.4-win | NOTE | Jan 10 2025 |
R-4.4-mac | NOTE | Jan 10 2025 |
R-4.3-win | NOTE | Jan 10 2025 |
R-4.3-mac | NOTE | Jan 10 2025 |
Exports:DEqualget_qsvsgetDegTxgetPCsk_qsvsnormalize_tx_namesqSVAselect_transcriptswhich_tx_names
Dependencies:abindannotateAnnotationDbiaskpassBHBiobaseBiocGenericsBiocParallelBiostringsbitbit64blobcachemclicodetoolscolorspacecpp11crayoncurlDBIDelayedArraydplyredgeRfansifarverfastmapformatRfutile.loggerfutile.optionsgenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtablehttrIRangesisobandjsonliteKEGGRESTlabelinglambda.rlatticelifecyclelimmalocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmeopensslpillarpkgconfigplogrpngR6RColorBrewerrlangRSQLiteS4ArraysS4VectorsscalessnowSparseArraystatmodSummarizedExperimentsurvivalsvasystibbletidyselectUCSC.utilsutf8vctrsviridisLitewithrXMLxtableXVector