Package: pmp 1.19.0
pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets
Methods and tools for (pre-)processing of metabolomics datasets (i.e. peak matrices), including filtering, normalisation, missing value imputation, scaling, and signal drift and batch effect correction methods. Filtering methods are based on: the fraction of missing values (across samples or features); Relative Standard Deviation (RSD) calculated from the Quality Control (QC) samples; the blank samples. Normalisation methods include Probabilistic Quotient Normalisation (PQN) and normalisation to total signal intensity. A unified user interface for several commonly used missing value imputation algorithms is also provided. Supported methods are: k-nearest neighbours (knn), random forests (rf), Bayesian PCA missing value estimator (bpca), mean or median value of the given feature and a constant small value. The generalised logarithm (glog) transformation algorithm is available to stabilise the variance across low and high intensity mass spectral features. Finally, this package provides an implementation of the Quality Control-Robust Spline Correction (QCRSC) algorithm for signal drift and batch effect correction of mass spectrometry-based datasets.
Authors:
pmp_1.19.0.tar.gz
pmp_1.19.0.zip(r-4.5)pmp_1.19.0.zip(r-4.4)pmp_1.19.0.zip(r-4.3)
pmp_1.19.0.tgz(r-4.4-any)pmp_1.19.0.tgz(r-4.3-any)
pmp_1.19.0.tar.gz(r-4.5-noble)pmp_1.19.0.tar.gz(r-4.4-noble)
pmp_1.19.0.tgz(r-4.4-emscripten)pmp_1.19.0.tgz(r-4.3-emscripten)
pmp.pdf |pmp.html✨
pmp/json (API)
NEWS
# Install 'pmp' in R: |
install.packages('pmp', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- MTBLS79 - Direct-infusion mass spectrometry (DIMS) data set
On BioConductor:pmp-1.19.0(bioc 3.21)pmp-1.18.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
massspectrometrymetabolomicssoftwarequalitycontrolbatcheffect
Last updated 2 months agofrom:7b8d4960e0. Checks:OK: 5 ERROR: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 25 2024 |
R-4.5-win | OK | Nov 25 2024 |
R-4.5-linux | OK | Nov 25 2024 |
R-4.4-win | OK | Nov 25 2024 |
R-4.4-mac | ERROR | Nov 25 2024 |
R-4.3-win | OK | Nov 25 2024 |
R-4.3-mac | ERROR | Nov 25 2024 |
Exports:filter_peaks_by_blankfilter_peaks_by_fractionfilter_peaks_by_rsdfilter_samples_by_mvglog_plot_optimised_lambdaglog_transformationmv_imputationnormalise_to_sumpqn_normalisationprocessing_historyQCRSCremove_peakssbc_plot
Dependencies:abindaskpassBiobaseBiocGenericsclicodetoolscolorspacecrayoncurlDelayedArraydigestdoRNGfansifarverforeachgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtablehttrimputeIRangesisobanditeratorsitertoolsjsonlitelabelinglatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimemissForestmunsellnlmeopensslpcaMethodspillarpkgconfigplyrR6randomForestRColorBrewerRcppreshape2rlangrngtoolsS4ArraysS4VectorsscalesSparseArraystringistringrSummarizedExperimentsystibbleUCSC.utilsutf8vctrsviridisLitewithrXVectorzlibbioc
Peak Matrix Processing for metabolomics datasets
Rendered frompmp_vignette_peak_matrix_processing_for_metabolomics_datasets.Rmd
usingknitr::rmarkdown
on Nov 25 2024.Last update: 2020-04-26
Started: 2020-04-23
Signal drift and batch effect correction and mass spectral quality assessment
Rendered frompmp_vignette_sbc_spectral_quality_assessment.Rmd
usingknitr::rmarkdown
on Nov 25 2024.Last update: 2020-04-24
Started: 2020-04-23
Signal drift and batch effect correction for mass spectrometry
Rendered frompmp_vignette_signal_batch_correction_mass_spectrometry.Rmd
usingknitr::rmarkdown
on Nov 25 2024.Last update: 2020-04-24
Started: 2020-04-23
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Filter features by blank samples | filter_peaks_by_blank |
Filter features by fraction of missing values | filter_peaks_by_fraction |
Filter features by RSD% of QC samples | filter_peaks_by_rsd |
Filter samples by missing values | filter_samples_by_mv |
Plot SSE error of lambda optimisation process | glog_plot_optimised_lambda |
Variance stabilising generalised logarithm (glog) transformation | glog_transformation |
Direct-infusion mass spectrometry (DIMS) data set | MTBLS79 |
Missing value imputation using different algorithms | mv_imputation |
Normalisation by total sum of the features per sample | normalise_to_sum |
Probabilistic quotient normalisation (PQN) | pqn_normalisation |
Return history of applied functions and argument from pmp package. | processing_history |
Quality Control-Robust Spline Correction (QC-RSC) | QCRSC |
Remove features from peak intensity matrix | remove_peaks |
Plot QCRSC corrected outputs | sbc_plot |