Package: netDx 1.19.0
netDx: Network-based patient classifier
netDx is a general-purpose algorithm to build a patient classifier from heterogenous patient data. The method converts data into patient similarity networks at the level of features. Feature selection identifies features of predictive value to each class. Methods are provided for versatile predictor design and performance evaluation using standard measures. netDx natively groups molecular data into pathway-level features and connects with Cytoscape for network visualization of pathway themes. For method details see: Pai et al. (2019). netDx: interpretable patient classification using integrated patient similarity networks. Molecular Systems Biology. 15, e8497
Authors:
netDx_1.19.0.tar.gz
netDx_1.19.0.zip(r-4.5)netDx_1.19.0.zip(r-4.4)netDx_1.19.0.zip(r-4.3)
netDx_1.19.0.tgz(r-4.4-any)netDx_1.19.0.tgz(r-4.3-any)
netDx_1.19.0.tar.gz(r-4.5-noble)netDx_1.19.0.tar.gz(r-4.4-noble)
netDx_1.19.0.tgz(r-4.4-emscripten)netDx_1.19.0.tgz(r-4.3-emscripten)
netDx.pdf |netDx.html✨
netDx/json (API)
NEWS
# Install 'netDx' in R: |
install.packages('netDx', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- MB.pheno - Sample metadata table for medulloblastoma dataset.
- cnv_GR - CNV locations for breast cancer
- cnv_TTstatus - List of train/test statuses for CNV example
- cnv_netPass - Vector of pathways that pass class enrichment
- cnv_netScores - List of pathway-level feature selection scores
- cnv_patientNetCount - Binary matrix of patient occurrence in networks
- cnv_pheno - Data.frame of patient labels and status for CNV example
- confmat - Confusion matrix example
- featScores - Demo feature-level scores from running feature selection on two-class problem
- genes - Table of gene definitions
- modelres - Sample output of getResults
- npheno - Toy sample metadata table
- pathwayList - Sample list of pathways
- pathway_GR - List of genomic ranges mapped to pathways
- pheno - Sample metadata table
- pheno_full - Subsample of TCGA breast cancer data used for netDx function examples
- predRes - Example output of getPatientRankings, used to call labels for test patients.
- silh - Toy network.
- toymodel - Example model returned by a buildPredictor() call.
- xpr - Example expression matrix
On BioConductor:netDx-1.19.0(bioc 3.21)netDx-1.18.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
classificationbiomedicalinformaticsnetworksystemsbiology
Last updated 23 days agofrom:093a387f5e. Checks:ERROR: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | FAIL | Oct 31 2024 |
R-4.5-win | ERROR | Oct 31 2024 |
R-4.5-linux | ERROR | Oct 31 2024 |
R-4.4-win | ERROR | Oct 31 2024 |
R-4.4-mac | ERROR | Oct 31 2024 |
R-4.3-win | ERROR | Oct 31 2024 |
R-4.3-mac | ERROR | Oct 31 2024 |
Exports:avgNormDiffbuildPredictorbuildPredictor_sparseGeneticcallFeatSelcallOverallSelectedFeaturescleanPathwayNamecompareShortestPathcompileFeaturescompileFeatureScoresconfusionMatrixconvertProfileToNetworksconvertToMAEcountIntTypecountIntType_batchcountPatientsInNetcreateNetFuncFromSimListcreatePSN_MultiDatadataList2ListenrichLabelNetsfetchPathwayDefinitionsgetEMapInputgetEMapInput_manygetEnrgetFeatureScoresgetFileSepgetGMjar_pathgetNetConsensusgetORgetPatientPredictionsgetPatientRankingsgetPerformancegetPSNgetRegionOLgetResultsgetSimilaritymakeInputForEnrichmentMapmakePSN_NamedMatrixmakePSN_RangeSetsmakeQueriesmakeSymmetricmapNamedRangesToSetsnormDiffperfCalcplotEmapplotIntegratedPatientNetworkplotPerfplotPerf_multipredictpredictPatientLabelspruneNetpruneNet_pctXpruneNetsrandAlphanumStringreadPathwaysRR_featureTallyrunFeatureSelectionrunQuerysetupFeatureDBsim.eucscalesim.pearscalesimpleCapsmoothMutations_LabelPropsparsify2sparsify3splitTestTrainsplitTestTrain_resamplingsubsampleValidationDatathresholdSmoothedMutationstSNEPlotterupdateNetswriteNetsSIFwriteQueryBatchFilewriteQueryFilewriteWeightedNets
Dependencies:abindaskpassBHbigmemorybigmemory.sriBiobaseBiocBaseUtilsBiocFileCacheBiocGenericsbitbit64bitopsblobcachemcaToolsclicodetoolscolorspacecombinatcpp11crayoncurlDBIdbplyrDelayedArraydoParalleldplyrfansifarverfastmapfilelockforeachgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2glmnetgluegplotsgtablegtoolshttrigraphIRangesisobanditeratorsjsonliteKernSmoothlabelinglatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeMultiAssayExperimentmunsellnlmeopensslpillarpkgconfigplogrplotrixplyrpracmapurrrR6rappdirsRColorBrewerRcppRcppEigenreshape2rlangROCRRSQLiteRtsneS4ArraysS4VectorsscalesshapeSparseArraystringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselectUCSC.utilsutf8uuidvctrsviridisLitewithrXVectorzlibbioc