Package: fabia 2.53.0
fabia: FABIA: Factor Analysis for Bicluster Acquisition
Biclustering by "Factor Analysis for Bicluster Acquisition" (FABIA). FABIA is a model-based technique for biclustering, that is clustering rows and columns simultaneously. Biclusters are found by factor analysis where both the factors and the loading matrix are sparse. FABIA is a multiplicative model that extracts linear dependencies between samples and feature patterns. It captures realistic non-Gaussian data distributions with heavy tails as observed in gene expression measurements. FABIA utilizes well understood model selection techniques like the EM algorithm and variational approaches and is embedded into a Bayesian framework. FABIA ranks biclusters according to their information content and separates spurious biclusters from true biclusters. The code is written in C.
Authors:
fabia_2.53.0.tar.gz
fabia_2.53.0.zip(r-4.5)fabia_2.53.0.zip(r-4.4)fabia_2.53.0.zip(r-4.3)
fabia_2.53.0.tgz(r-4.4-x86_64)fabia_2.53.0.tgz(r-4.4-arm64)fabia_2.53.0.tgz(r-4.3-x86_64)fabia_2.53.0.tgz(r-4.3-arm64)
fabia_2.53.0.tar.gz(r-4.5-noble)fabia_2.53.0.tar.gz(r-4.4-noble)
fabia_2.53.0.tgz(r-4.4-emscripten)fabia_2.53.0.tgz(r-4.3-emscripten)
fabia.pdf |fabia.html✨
fabia/json (API)
NEWS
# Install 'fabia' in R: |
install.packages('fabia', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
On BioConductor:fabia-2.53.0(bioc 3.21)fabia-2.52.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
statisticalmethodmicroarraydifferentialexpressionmultiplecomparisonclusteringvisualization
Last updated 2 months agofrom:c680892848. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 19 2024 |
R-4.5-win-x86_64 | WARNING | Dec 19 2024 |
R-4.5-linux-x86_64 | WARNING | Dec 19 2024 |
R-4.4-win-x86_64 | WARNING | Dec 19 2024 |
R-4.4-mac-x86_64 | WARNING | Dec 19 2024 |
R-4.4-mac-aarch64 | WARNING | Dec 19 2024 |
R-4.3-win-x86_64 | WARNING | Dec 19 2024 |
R-4.3-mac-x86_64 | WARNING | Dec 19 2024 |
R-4.3-mac-aarch64 | WARNING | Dec 19 2024 |
Exports:aviniavini<-centercenter<-estimateModeextractBicextractPlotfabifabiafabiaDemofabiapfabiasfabiaspfabiaVersioniniini<-lLl<-L<-laplalapla<-LZLZ<-MM<-makeFabiaDatamakeFabiaDataBlocksmakeFabiaDataBlocksPosmakeFabiaDataPosmatrixImagePlotmfscnn<-nmfdivnmfeunmfscp1p1<-p2p2<-parametersparameters<-plotplotBiclusterprojFuncprojFuncPosPsiPsi<-readSamplesSpfabiareadSpfabiaResultsamplesPerFeaturescaleDatascaleData<-showshowSelectedspfabiasummaryUU<-XX<-xavinixavini<-ZZ<-
Dependencies:BiobaseBiocGenericsgenerics
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Estimation of the modes of the rows of a matrix | estimateMode |
Extraction of Biclusters | extractBic |
Plotting of Biclustering Results | extractPlot |
Factor Analysis for Bicluster Acquisition: Laplace Prior (FABI) | fabi |
Factor Analysis for Bicluster Acquisition: Laplace Prior (FABIA) | fabia |
Demos for fabia | fabiaDemo |
Factor Analysis for Bicluster Acquisition: Post-Projection (FABIAP) | fabiap |
Factor Analysis for Bicluster Acquisition: Sparseness Projection (FABIAS) | fabias |
Factor Analysis for Bicluster Acquisition: Sparseness Projection (FABIASP) | fabiasp |
Display version info for package and for FABIA | fabiaVersion |
Factorization instances | avini avini,Factorization-method avini<- avini<-,Factorization,numeric-method avini<-,Factorization,vector-method center center,Factorization-method center<- center<-,Factorization,numeric-method center<-,Factorization,vector-method Factorization Factorization,ANY-method Factorization,list-method,numeric-method,vector-method,matrix-method,ANY-method Factorization-class Factorization-method ini ini,Factorization-method ini<- ini<-,Factorization,matrix-method L l L,Factorization-method l,Factorization-method L<- l<- L<-,Factorization,matrix-method l<-,Factorization,numeric-method lapla lapla,Factorization-method lapla<- lapla<-,Factorization,matrix-method LZ LZ,Factorization-method LZ<- LZ<-,Factorization,matrix-method M M,Factorization-method M<- M<-,Factorization,matrix-method n n,Factorization-method n<- n<-,Factorization,numeric-method p1 p1,Factorization-method p1<- p1<-,Factorization,numeric-method p2 p2,Factorization-method p2<- p2<-,Factorization,numeric-method parameters parameters,Factorization-method parameters<- parameters<-,Factorization,list-method plot,Factorization,missing-method plot,Factorization-method Psi Psi,Factorization-method Psi<- Psi<-,Factorization,numeric-method Psi<-,Factorization,vector-method scaleData scaleData,Factorization-method scaleData<- scaleData<-,Factorization,numeric-method scaleData<-,Factorization,vector-method show,Factorization-method showSelected showSelected,Factorization,numeric-method showSelected,Factorization-method summary,Factorization-method U U,Factorization-method U<- U<-,Factorization,matrix-method X X,Factorization-method X<- X<-,Factorization,matrix-method xavini xavini,Factorization-method xavini<- xavini<-,Factorization,numeric-method xavini<-,Factorization,vector-method Z Z,Factorization-method Z<- Z<-,Factorization,matrix-method |
Generation of Bicluster Data | makeFabiaData |
Generation of Bicluster Data with Bicluster Blocks | makeFabiaDataBlocks |
Generation of Bicluster Data with Bicluster Blocks | makeFabiaDataBlocksPos |
Generation of Bicluster Data | makeFabiaDataPos |
Plotting of a Matrix | matrixImagePlot |
Sparse Matrix Factorization for Bicluster Analysis (MFSC) | mfsc |
Non-negative Matrix Factorization: Kullback-Leibler Divergence | nmfdiv |
Non-negative Matrix Factorization: Euclidean Distance | nmfeu |
Non-negative Sparse Matrix Factorization | nmfsc |
Plotting of a bicluster | plotBicluster |
Projection of a Vector to a Sparse Vector | projFunc |
Projection of a Vector to a Non-negative Sparse Vector | projFuncPos |
Factor Analysis for Bicluster Acquisition: Read Sparse Matrix Samples | readSamplesSpfabia |
Factor Analysis for Bicluster Acquisition: Read Results of SpFabia | readSpfabiaResult |
Factor Analysis for Bicluster Acquisition: Supplies samples per feature | samplesPerFeature |
Factor Analysis for Bicluster Acquisition: SPARSE FABIA | spfabia |