Title: | FABIA: Factor Analysis for Bicluster Acquisition |
---|---|
Description: | Biclustering by "Factor Analysis for Bicluster Acquisition" (FABIA). FABIA is a model-based technique for biclustering, that is clustering rows and columns simultaneously. Biclusters are found by factor analysis where both the factors and the loading matrix are sparse. FABIA is a multiplicative model that extracts linear dependencies between samples and feature patterns. It captures realistic non-Gaussian data distributions with heavy tails as observed in gene expression measurements. FABIA utilizes well understood model selection techniques like the EM algorithm and variational approaches and is embedded into a Bayesian framework. FABIA ranks biclusters according to their information content and separates spurious biclusters from true biclusters. The code is written in C. |
Authors: | Sepp Hochreiter <[email protected]> |
Maintainer: | Andreas Mitterecker <[email protected]> |
License: | LGPL (>= 2.1) |
Version: | 2.53.0 |
Built: | 2024-12-19 03:21:34 UTC |
Source: | https://github.com/bioc/fabia |
estimateMode
: R implementation of estimateMode
.
estimateMode(X,maxiter=50,tol=0.001,alpha=0.1,a1=4.0,G1=FALSE)
estimateMode(X,maxiter=50,tol=0.001,alpha=0.1,a1=4.0,G1=FALSE)
X |
matrix of which the modes of the rows are estimated. |
maxiter |
maximal number of iterations; default = 50. |
tol |
tolerance for stopping; default = 0.001. |
alpha |
learning rate; default = 0.1. |
a1 |
parameter of the width of the given distribution; default = 4. |
G1 |
kind of distribution, |
The mode is estimated by contrast functions G1
or G2
The estimation is performed by gradient descent initialized by the median.
Implementation in R.
u |
the vector of estimated modes. |
xu |
|
Sepp Hochreiter
A. Hyvaerinen, ‘Fast and Robust Fixed-Point Algorithms for Independent Component Analysis’, IEEE Transactions on Neural Networks 10(3):626-634, 1999.
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # DEMO #--------------- dat <- makeFabiaDataBlocksPos(n = 100,l= 50,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 2.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] # modes <- estimateMode(X) # modes$u - apply(X, 1, median)
#--------------- # DEMO #--------------- dat <- makeFabiaDataBlocksPos(n = 100,l= 50,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 2.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] # modes <- estimateMode(X) # modes$u - apply(X, 1, median)
extractBic
: R implementation of extractBic
.
extractBic(fact,thresZ=0.5,thresL=NULL)
extractBic(fact,thresZ=0.5,thresL=NULL)
fact |
object of the class |
thresZ |
threshold for sample belonging to bicluster; default 0.5. |
thresL |
threshold for loading belonging to bicluster (if not given it is estimated). |
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
,
from
.
is the Gaussian noise with a diagonal covariance matrix
which entries are given by
Psi
.
The is locally approximated by a Gaussian with inverse
variance given by
lapla
.
Using these values we can computer
for each the variance
given
. Here
This variance can be used to determine the information content of a bicluster.
The and
are used to
extract the bicluster
, where a threshold determines which
observations and which samples belong the the bicluster.
In bic
the biclusters are extracted according to the
largest absolute values of the component , i.e.
the largest values of
and the
largest values of
. The factors
are normalized to variance 1.
The components of bic
are
binp
, bixv
,
bixn
, biypv
, and biypn
.
binp
give the size of the bicluster: number observations and
number samples.
bixv
gives the values of the extracted
observations that have absolute
values above a threshold. They are sorted.
bixn
gives the extracted observation names (e.g. gene names).
biypv
gives the values of the extracted samples that have
absolute values above a threshold. They are sorted.
biypn
gives the names of the extracted samples (e.g. sample names).
In bicopp
the opposite clusters to the biclusters are
given. Opposite means that the negative pattern is present.
The components of opposite clusters bicopp
are
binn
, bixv
,
bixn
, biypnv
, and biynn
.
binp
give the size of the opposite bicluster: number observations and
number samples.
bixv
gives the values of the extracted
observations that have absolute
values above a threshold. They are sorted.
bixn
gives the extracted observation names (e.g. gene names).
biynv
gives the values of the opposite extracted samples that have
absolute values above a threshold. They are sorted.
biynn
gives the names of the opposite
extracted samples (e.g. sample names).
That means the samples are divided into two groups where one group shows large positive values and the other group has negative values with large absolute values. That means a observation pattern can be switched on or switched off relative to the average value.
numn
gives the indices of bic
with components:
numng
= bix
and numnp
= biypn
.
numn
gives the indices of bicopp
with components:
numng
= bix
and numnn
= biynn
.
Implementation in R.
bic |
extracted biclusters. |
numn |
indexes for the extracted biclusters. |
bicopp |
extracted opposite biclusters. |
numnopp |
indexes for the extracted opposite biclusters. |
X |
scaled and centered data matrix. |
np |
number of biclusters. |
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabia(X,3,0.01,20) rEx <- extractBic(resEx) rEx$bic[1,] rEx$bic[2,] rEx$bic[3,] ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabia(X,13,0.01,200) rToy <- extractBic(resToy) avini(resToy) rToy$bic[1,] rToy$bic[2,] rToy$bic[3,] #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabia(X,5,0.1,200) rBreast <- extractBic(resBreast) avini(resBreast) rBreast$bic[1,] rBreast$bic[2,] rBreast$bic[3,] } ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabia(X,3,0.01,20) rEx <- extractBic(resEx) rEx$bic[1,] rEx$bic[2,] rEx$bic[3,] ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabia(X,13,0.01,200) rToy <- extractBic(resToy) avini(resToy) rToy$bic[1,] rToy$bic[2,] rToy$bic[3,] #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabia(X,5,0.1,200) rBreast <- extractBic(resBreast) avini(resBreast) rBreast$bic[1,] rBreast$bic[2,] rBreast$bic[3,] } ## End(Not run)
extractPlot
: R implementation of extractPlot
.
extractPlot(fact,thresZ=0.5,ti="",thresL=NULL,Y=NULL,which=c(1,2,3,4,5,6))
extractPlot(fact,thresZ=0.5,ti="",thresL=NULL,Y=NULL,which=c(1,2,3,4,5,6))
fact |
object of the class |
thresZ |
threshold for sample belonging to bicluster; default 0.5. |
thresL |
threshold for loading belonging to bicluster (estimated if not given). |
ti |
plot title; default "". |
Y |
noise free data matrix. |
which |
which plot is shown: 1=noise free data (if available), 2=data, 3=reconstructed data, 4=error, 5=absolute factors, 6=absolute loadings; default c(1,2,3,4,5,6). |
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
,
from
.
The hidden dimension is used for kmeans clustering of
and
.
The and
are used to
extract the bicluster
, where a threshold determines which
observations and which samples belong the the bicluster.
The method produces following plots depending what plots are chosen by the "which" variable:
“Y”: noise free data (if available), “X”: data, “LZ”: reconstructed data, “LZ-X”: error, “abs(Z)”: absolute factors, “abs(L)”: absolute loadings.
Implementation in R.
Returns corresponding plots
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
spfabia
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabia(X,3,0.1,20) extractPlot(resEx,ti="FABIA",Y=Y) ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabia(X,13,0.01,200) extractPlot(resToy,ti="FABIA",Y=Y) #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabia(X,5,0.1,200) extractPlot(resBreast,ti="FABIA Breast cancer(Veer)") #sorting of predefined labels CBreast } ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabia(X,3,0.1,20) extractPlot(resEx,ti="FABIA",Y=Y) ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabia(X,13,0.01,200) extractPlot(resToy,ti="FABIA",Y=Y) #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabia(X,5,0.1,200) extractPlot(resBreast,ti="FABIA Breast cancer(Veer)") #sorting of predefined labels CBreast } ## End(Not run)
fabi
: R implementation of fabia
, therefore it is slow.
fabi(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,center=2,norm=1,lap=1.0)
fabi(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,center=2,norm=1,lap=1.0)
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 13. |
alpha |
sparseness loadings (0-1.0); default = 0.01. |
cyc |
number of iterations; default = 500. |
spl |
sparseness prior loadings (0 - 2.0); default = 0 (Laplace). |
spz |
sparseness factors (0.5-2.0); default = 0.5 (Laplace). |
center |
data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2. |
norm |
data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1. |
lap |
minimal value of the variational parameter; default = 1.0. |
Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
,
from
.
If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
We recommend to normalize the components to variance one in order to make the signal and noise comparable across components.
The model selection is performed by a variational approach according to Girolami 2001 and Palmer et al. 2006.
We included a prior on the parameters and minimize a lower bound on the posterior of the parameters given the data. The update of the loadings includes an additive term which pushes the loadings toward zero (Gaussian prior leads to an multiplicative factor).
The code is implemented in R, therefore it is slow.
object of the class |
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’, Neural Computation 13(11): 2517-2532, 2001.
J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.
fabia
,
fabias
,
fabiap
,
spfabia
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabi(X,3,0.01,20) ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabi(X,13,0.01,200) extractPlot(resToy,ti="FABI",Y=Y) #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabi(X,5,0.1,200) extractPlot(resBreast,ti="FABI Breast cancer(Veer)") #sorting of predefined labels CBreast } #--------------- # DEMO3 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti <- fabi(X,5,0.1,200) extractPlot(resMulti,ti="FABI Multiple tissues(Su)") #sorting of predefined labels CMulti } #--------------- # DEMO4 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL <- fabi(X,5,0.1,200) extractPlot(resDLBCL,ti="FABI Lymphoma(Rosenwald)") #sorting of predefined labels CDLBCL } ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabi(X,3,0.01,20) ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabi(X,13,0.01,200) extractPlot(resToy,ti="FABI",Y=Y) #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabi(X,5,0.1,200) extractPlot(resBreast,ti="FABI Breast cancer(Veer)") #sorting of predefined labels CBreast } #--------------- # DEMO3 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti <- fabi(X,5,0.1,200) extractPlot(resMulti,ti="FABI Multiple tissues(Su)") #sorting of predefined labels CMulti } #--------------- # DEMO4 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL <- fabi(X,5,0.1,200) extractPlot(resDLBCL,ti="FABI Lymphoma(Rosenwald)") #sorting of predefined labels CDLBCL } ## End(Not run)
fabia
: C implementation of fabia
.
fabia(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,non_negative=0,random=1.0,center=2,norm=1,scale=0.0,lap=1.0,nL=0,lL=0,bL=0)
fabia(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,non_negative=0,random=1.0,center=2,norm=1,scale=0.0,lap=1.0,nL=0,lL=0,bL=0)
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 13. |
alpha |
sparseness loadings (0 - 1.0); default = 0.01. |
cyc |
number of iterations; default = 500. |
spl |
sparseness prior loadings (0 - 2.0); default = 0 (Laplace). |
spz |
sparseness factors (0.5 - 2.0); default = 0.5 (Laplace). |
non_negative |
Non-negative factors and loadings if non_negative > 0; default = 0. |
random |
<=0: by SVD, >0: random initialization of loadings in [-random,random]; default = 1.0. |
center |
data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2. |
norm |
data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1. |
scale |
loading vectors are scaled in each iteration to the given variance. 0.0 indicates non scaling; default = 0.0. |
lap |
minimal value of the variational parameter; default = 1.0 |
nL |
maximal number of biclusters at which a row element can participate; default = 0 (no limit) |
lL |
maximal number of row elements per bicluster; default = 0 (no limit) |
bL |
cycle at which the nL or lL maximum starts; default = 0 (start at the beginning) |
Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
,
from
.
If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
The model selection is performed by a variational approach according to Girolami 2001 and Palmer et al. 2006.
We included a prior on the parameters and minimize a lower bound on the posterior of the parameters given the data. The update of the loadings includes an additive term which pushes the loadings toward zero (Gaussian prior leads to an multiplicative factor).
The code is implemented in C.
object of the class |
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’, Neural Computation 13(11): 2517-2532, 2001.
J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.
fabia
,
fabias
,
fabiap
,
spfabia
,
readSpfabiaResult
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabia(X,3,0.01,50) ## Not run: #----------------- # DEMO1: Toy Data #----------------- n = 1000 l= 100 p = 10 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] ZC <- dat[[3]] LC <- dat[[4]] gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab #### FABIA resToy1 <- fabia(X,13,0.01,400) extractPlot(resToy1,ti="FABIA",Y=Y) raToy1 <- extractBic(resToy1) if ((raToy1$bic[[1]][1]>1) && (raToy1$bic[[1]][2])>1) { plotBicluster(raToy1,1) } if ((raToy1$bic[[2]][1]>1) && (raToy1$bic[[2]][2])>1) { plotBicluster(raToy1,2) } if ((raToy1$bic[[3]][1]>1) && (raToy1$bic[[3]][2])>1) { plotBicluster(raToy1,3) } if ((raToy1$bic[[4]][1]>1) && (raToy1$bic[[4]][2])>1) { plotBicluster(raToy1,4) } colnames(X(resToy1)) <- clab rownames(X(resToy1)) <- llab plot(resToy1,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy1,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy1,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------------------------------ # DEMO2: Laura van't Veer's gene expression # data set for breast cancer #------------------------------------------ avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast1 <- fabia(X,5,0.1,400) extractPlot(resBreast1,ti="FABIA Breast cancer(Veer)") raBreast1 <- extractBic(resBreast1) if ((raBreast1$bic[[1]][1]>1) && (raBreast1$bic[[1]][2])>1) { plotBicluster(raBreast1,1) } if ((raBreast1$bic[[2]][1]>1) && (raBreast1$bic[[2]][2])>1) { plotBicluster(raBreast1,2) } if ((raBreast1$bic[[3]][1]>1) && (raBreast1$bic[[3]][2])>1) { plotBicluster(raBreast1,3) } if ((raBreast1$bic[[4]][1]>1) && (raBreast1$bic[[4]][2])>1) { plotBicluster(raBreast1,4) } plot(resBreast1,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) } #----------------------------------- # DEMO3: Su's multiple tissue types # gene expression data set #----------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti1 <- fabia(X,5,0.06,300,norm=2) extractPlot(resMulti1,ti="FABIA Multiple tissues(Su)") raMulti1 <- extractBic(resMulti1) if ((raMulti1$bic[[1]][1]>1) && (raMulti1$bic[[1]][2])>1) { plotBicluster(raMulti1,1) } if ((raMulti1$bic[[2]][1]>1) && (raMulti1$bic[[2]][2])>1) { plotBicluster(raMulti1,2) } if ((raMulti1$bic[[3]][1]>1) && (raMulti1$bic[[3]][2])>1) { plotBicluster(raMulti1,3) } if ((raMulti1$bic[[4]][1]>1) && (raMulti1$bic[[4]][2])>1) { plotBicluster(raMulti1,4) } plot(resMulti1,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) } #----------------------------------------- # DEMO4: Rosenwald's diffuse large-B-cell # lymphoma gene expression data set #----------------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL1 <- fabia(X,5,0.1,400,norm=2) extractPlot(resDLBCL1,ti="FABIA Lymphoma(Rosenwald)") raDLBCL1 <- extractBic(resDLBCL1) if ((raDLBCL1$bic[[1]][1]>1) && (raDLBCL1$bic[[1]][2])>1) { plotBicluster(raDLBCL1,1) } if ((raDLBCL1$bic[[2]][1]>1) && (raDLBCL1$bic[[2]][2])>1) { plotBicluster(raDLBCL1,2) } if ((raDLBCL1$bic[[3]][1]>1) && (raDLBCL1$bic[[3]][2])>1) { plotBicluster(raDLBCL1,3) } if ((raDLBCL1$bic[[4]][1]>1) && (raDLBCL1$bic[[4]][2])>1) { plotBicluster(raDLBCL1,4) } plot(resDLBCL1,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) } ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabia(X,3,0.01,50) ## Not run: #----------------- # DEMO1: Toy Data #----------------- n = 1000 l= 100 p = 10 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] ZC <- dat[[3]] LC <- dat[[4]] gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab #### FABIA resToy1 <- fabia(X,13,0.01,400) extractPlot(resToy1,ti="FABIA",Y=Y) raToy1 <- extractBic(resToy1) if ((raToy1$bic[[1]][1]>1) && (raToy1$bic[[1]][2])>1) { plotBicluster(raToy1,1) } if ((raToy1$bic[[2]][1]>1) && (raToy1$bic[[2]][2])>1) { plotBicluster(raToy1,2) } if ((raToy1$bic[[3]][1]>1) && (raToy1$bic[[3]][2])>1) { plotBicluster(raToy1,3) } if ((raToy1$bic[[4]][1]>1) && (raToy1$bic[[4]][2])>1) { plotBicluster(raToy1,4) } colnames(X(resToy1)) <- clab rownames(X(resToy1)) <- llab plot(resToy1,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy1,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy1,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------------------------------ # DEMO2: Laura van't Veer's gene expression # data set for breast cancer #------------------------------------------ avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast1 <- fabia(X,5,0.1,400) extractPlot(resBreast1,ti="FABIA Breast cancer(Veer)") raBreast1 <- extractBic(resBreast1) if ((raBreast1$bic[[1]][1]>1) && (raBreast1$bic[[1]][2])>1) { plotBicluster(raBreast1,1) } if ((raBreast1$bic[[2]][1]>1) && (raBreast1$bic[[2]][2])>1) { plotBicluster(raBreast1,2) } if ((raBreast1$bic[[3]][1]>1) && (raBreast1$bic[[3]][2])>1) { plotBicluster(raBreast1,3) } if ((raBreast1$bic[[4]][1]>1) && (raBreast1$bic[[4]][2])>1) { plotBicluster(raBreast1,4) } plot(resBreast1,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast1,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) } #----------------------------------- # DEMO3: Su's multiple tissue types # gene expression data set #----------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti1 <- fabia(X,5,0.06,300,norm=2) extractPlot(resMulti1,ti="FABIA Multiple tissues(Su)") raMulti1 <- extractBic(resMulti1) if ((raMulti1$bic[[1]][1]>1) && (raMulti1$bic[[1]][2])>1) { plotBicluster(raMulti1,1) } if ((raMulti1$bic[[2]][1]>1) && (raMulti1$bic[[2]][2])>1) { plotBicluster(raMulti1,2) } if ((raMulti1$bic[[3]][1]>1) && (raMulti1$bic[[3]][2])>1) { plotBicluster(raMulti1,3) } if ((raMulti1$bic[[4]][1]>1) && (raMulti1$bic[[4]][2])>1) { plotBicluster(raMulti1,4) } plot(resMulti1,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti1,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) } #----------------------------------------- # DEMO4: Rosenwald's diffuse large-B-cell # lymphoma gene expression data set #----------------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL1 <- fabia(X,5,0.1,400,norm=2) extractPlot(resDLBCL1,ti="FABIA Lymphoma(Rosenwald)") raDLBCL1 <- extractBic(resDLBCL1) if ((raDLBCL1$bic[[1]][1]>1) && (raDLBCL1$bic[[1]][2])>1) { plotBicluster(raDLBCL1,1) } if ((raDLBCL1$bic[[2]][1]>1) && (raDLBCL1$bic[[2]][2])>1) { plotBicluster(raDLBCL1,2) } if ((raDLBCL1$bic[[3]][1]>1) && (raDLBCL1$bic[[3]][2])>1) { plotBicluster(raDLBCL1,3) } if ((raDLBCL1$bic[[4]][1]>1) && (raDLBCL1$bic[[4]][2])>1) { plotBicluster(raDLBCL1,4) } plot(resDLBCL1,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL1,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) } ## End(Not run)
fabiaDemo
calls the demo codes for fabia.
fabiaDemo()
fabiaDemo()
Calls the demo codes for fabia
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
## Not run: # interactive fabiaDemo() ## End(Not run)
## Not run: # interactive fabiaDemo() ## End(Not run)
fabiap
: C implementation of fabiap
.
fabiap(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,sL=0.6,sZ=0.6,non_negative=0,random=1.0,center=2,norm=1,scale=0.0,lap=1.0,nL=0,lL=0,bL=0)
fabiap(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,sL=0.6,sZ=0.6,non_negative=0,random=1.0,center=2,norm=1,scale=0.0,lap=1.0,nL=0,lL=0,bL=0)
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 13. |
alpha |
sparseness loadings (0-1.0); default = 0.01. |
cyc |
number of iterations; default = 500. |
spl |
sparseness prior loadings (0 - 2.0); default = 0 (Laplace). |
spz |
sparseness factors (0.5 - 2.0); default = 0.5 (Laplace). |
sL |
final sparseness loadings; default = 0.6. |
sZ |
final sparseness factors; default = 0.6. |
non_negative |
Non-negative factors and loadings if non_negative > 0; default = 0. |
random |
<=0: by SVD, >0: random initialization of loadings in [-random,random]; default = 1.0. |
center |
data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2. |
norm |
data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1. |
scale |
loading vectors are scaled in each iteration to the given variance. 0.0 indicates non scaling; default = 0.0. |
lap |
minimal value of the variational parameter; default = 1.0. |
nL |
maximal number of biclusters at which a row element can participate; default = 0 (no limit) |
lL |
maximal number of row elements per bicluster; default = 0 (no limit) |
bL |
cycle at which the nL or lL maximum starts; default = 0 (start at the beginning) |
Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse. Post-processing by projecting the final results to a given sparseness criterion.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
,
from
.
If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
The model selection is performed by a variational approach according to Girolami 2001 and Palmer et al. 2006.
We included a prior on the parameters and minimize a lower bound on the posterior of the parameters given the data. The update of the loadings includes an additive term which pushes the loadings toward zero (Gaussian prior leads to an multiplicative factor).
Post-processing:
The final results of the loadings and the factors are projected to
a sparse vector according to Hoyer, 2004: given an
-norm and an
-norm minimize the Euclidean distance
to the original vector (currently the
-norm is fixed to 1).
The projection is a convex quadratic problem which is solved
iteratively where at each iteration at least one component is set to
zero. Instead of the
-norm a sparseness measurement is used
which relates the
-norm to the
-norm:
The code is implemented in C and the projection in R.
object of the class |
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’, Neural Computation 13(11): 2517-2532, 2001.
J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.
Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.
fabia
,
fabias
,
fabiap
,
spfabia
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabiap(X,3,0.1,50) ## Not run: #----------------- # DEMO1: Toy Data #----------------- n = 1000 l= 100 p = 10 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] ZC <- dat[[3]] LC <- dat[[4]] gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab #### FABIAP resToy3 <- fabiap(X,13,0.1,400) extractPlot(resToy3,ti="FABIAP",Y=Y) raToy3 <- extractBic(resToy3) if ((raToy3$bic[[1]][1]>1) && (raToy3$bic[[1]][2])>1) { plotBicluster(raToy3,1) } if ((raToy3$bic[[2]][1]>1) && (raToy3$bic[[2]][2])>1) { plotBicluster(raToy3,2) } if ((raToy3$bic[[3]][1]>1) && (raToy3$bic[[3]][2])>1) { plotBicluster(raToy3,3) } if ((raToy3$bic[[4]][1]>1) && (raToy3$bic[[4]][2])>1) { plotBicluster(raToy3,4) } colnames(X(resToy3)) <- clab rownames(X(resToy3)) <- llab plot(resToy3,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy3,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy3,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------------------------------ # DEMO2: Laura van't Veer's gene expression # data set for breast cancer #------------------------------------------ avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast3 <- fabiap(X,5,0.1,400) extractPlot(resBreast3,ti="FABIAP Breast cancer(Veer)") raBreast3 <- extractBic(resBreast3) if ((raBreast3$bic[[1]][1]>1) && (raBreast3$bic[[1]][2])>1) { plotBicluster(raBreast3,1) } if ((raBreast3$bic[[2]][1]>1) && (raBreast3$bic[[2]][2])>1) { plotBicluster(raBreast3,2) } if ((raBreast3$bic[[3]][1]>1) && (raBreast3$bic[[3]][2])>1) { plotBicluster(raBreast3,3) } if ((raBreast3$bic[[4]][1]>1) && (raBreast3$bic[[4]][2])>1) { plotBicluster(raBreast3,4) } plot(resBreast3,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) } #----------------------------------- # DEMO3: Su's multiple tissue types # gene expression data set #----------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti3 <- fabiap(X,5,0.1,300) extractPlot(resMulti3,ti="FABIAP Multiple tissues(Su)") raMulti3 <- extractBic(resMulti3) if ((raMulti3$bic[[1]][1]>1) && (raMulti3$bic[[1]][2])>1) { plotBicluster(raMulti3,1) } if ((raMulti3$bic[[2]][1]>1) && (raMulti3$bic[[2]][2])>1) { plotBicluster(raMulti3,2) } if ((raMulti3$bic[[3]][1]>1) && (raMulti3$bic[[3]][2])>1) { plotBicluster(raMulti3,3) } if ((raMulti3$bic[[4]][1]>1) && (raMulti3$bic[[4]][2])>1) { plotBicluster(raMulti3,4) } plot(resMulti3,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) } #----------------------------------------- # DEMO4: Rosenwald's diffuse large-B-cell # lymphoma gene expression data set #----------------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL3 <- fabiap(X,5,0.1,400) extractPlot(resDLBCL3,ti="FABIAP Lymphoma(Rosenwald)") raDLBCL3 <- extractBic(resDLBCL3) if ((raDLBCL3$bic[[1]][1]>1) && (raDLBCL3$bic[[1]][2])>1) { plotBicluster(raDLBCL3,1) } if ((raDLBCL3$bic[[2]][1]>1) && (raDLBCL3$bic[[2]][2])>1) { plotBicluster(raDLBCL3,2) } if ((raDLBCL3$bic[[3]][1]>1) && (raDLBCL3$bic[[3]][2])>1) { plotBicluster(raDLBCL3,3) } if ((raDLBCL3$bic[[4]][1]>1) && (raDLBCL3$bic[[4]][2])>1) { plotBicluster(raDLBCL3,4) } plot(resDLBCL3,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) } ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabiap(X,3,0.1,50) ## Not run: #----------------- # DEMO1: Toy Data #----------------- n = 1000 l= 100 p = 10 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] ZC <- dat[[3]] LC <- dat[[4]] gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab #### FABIAP resToy3 <- fabiap(X,13,0.1,400) extractPlot(resToy3,ti="FABIAP",Y=Y) raToy3 <- extractBic(resToy3) if ((raToy3$bic[[1]][1]>1) && (raToy3$bic[[1]][2])>1) { plotBicluster(raToy3,1) } if ((raToy3$bic[[2]][1]>1) && (raToy3$bic[[2]][2])>1) { plotBicluster(raToy3,2) } if ((raToy3$bic[[3]][1]>1) && (raToy3$bic[[3]][2])>1) { plotBicluster(raToy3,3) } if ((raToy3$bic[[4]][1]>1) && (raToy3$bic[[4]][2])>1) { plotBicluster(raToy3,4) } colnames(X(resToy3)) <- clab rownames(X(resToy3)) <- llab plot(resToy3,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy3,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy3,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------------------------------ # DEMO2: Laura van't Veer's gene expression # data set for breast cancer #------------------------------------------ avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast3 <- fabiap(X,5,0.1,400) extractPlot(resBreast3,ti="FABIAP Breast cancer(Veer)") raBreast3 <- extractBic(resBreast3) if ((raBreast3$bic[[1]][1]>1) && (raBreast3$bic[[1]][2])>1) { plotBicluster(raBreast3,1) } if ((raBreast3$bic[[2]][1]>1) && (raBreast3$bic[[2]][2])>1) { plotBicluster(raBreast3,2) } if ((raBreast3$bic[[3]][1]>1) && (raBreast3$bic[[3]][2])>1) { plotBicluster(raBreast3,3) } if ((raBreast3$bic[[4]][1]>1) && (raBreast3$bic[[4]][2])>1) { plotBicluster(raBreast3,4) } plot(resBreast3,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast3,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) } #----------------------------------- # DEMO3: Su's multiple tissue types # gene expression data set #----------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti3 <- fabiap(X,5,0.1,300) extractPlot(resMulti3,ti="FABIAP Multiple tissues(Su)") raMulti3 <- extractBic(resMulti3) if ((raMulti3$bic[[1]][1]>1) && (raMulti3$bic[[1]][2])>1) { plotBicluster(raMulti3,1) } if ((raMulti3$bic[[2]][1]>1) && (raMulti3$bic[[2]][2])>1) { plotBicluster(raMulti3,2) } if ((raMulti3$bic[[3]][1]>1) && (raMulti3$bic[[3]][2])>1) { plotBicluster(raMulti3,3) } if ((raMulti3$bic[[4]][1]>1) && (raMulti3$bic[[4]][2])>1) { plotBicluster(raMulti3,4) } plot(resMulti3,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti3,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) } #----------------------------------------- # DEMO4: Rosenwald's diffuse large-B-cell # lymphoma gene expression data set #----------------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL3 <- fabiap(X,5,0.1,400) extractPlot(resDLBCL3,ti="FABIAP Lymphoma(Rosenwald)") raDLBCL3 <- extractBic(resDLBCL3) if ((raDLBCL3$bic[[1]][1]>1) && (raDLBCL3$bic[[1]][2])>1) { plotBicluster(raDLBCL3,1) } if ((raDLBCL3$bic[[2]][1]>1) && (raDLBCL3$bic[[2]][2])>1) { plotBicluster(raDLBCL3,2) } if ((raDLBCL3$bic[[3]][1]>1) && (raDLBCL3$bic[[3]][2])>1) { plotBicluster(raDLBCL3,3) } if ((raDLBCL3$bic[[4]][1]>1) && (raDLBCL3$bic[[4]][2])>1) { plotBicluster(raDLBCL3,4) } plot(resDLBCL3,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL3,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) } ## End(Not run)
fabias
: C implementation of fabias
.
fabias(X,p=13,alpha=0.6,cyc=500,spz=0.5,non_negative=0,random=1.0,center=2,norm=1,lap=1.0,nL=0,lL=0,bL=0)
fabias(X,p=13,alpha=0.6,cyc=500,spz=0.5,non_negative=0,random=1.0,center=2,norm=1,lap=1.0,nL=0,lL=0,bL=0)
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 13. |
alpha |
sparseness loadings (0.1 - 1.0); default = 0.1. |
cyc |
number of iterations; default = 500. |
spz |
sparseness factors (0.5 - 2.0); default = 0.5 (Laplace). |
non_negative |
Non-negative factors and loadings if non_negative > 0; default = 0. |
random |
<=0: by SVD, >0: random initialization of loadings in [-random,random]; default = 1.0. |
center |
data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2. |
norm |
data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1. |
lap |
minimal value of the variational parameter; default = 1.0. |
nL |
maximal number of biclusters at which a row element can participate; default = 0 (no limit) |
lL |
maximal number of row elements per bicluster; default = 0 (no limit) |
bL |
cycle at which the nL or lL maximum starts; default = 0 (start at the beginning) |
Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
,
from
.
If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
The model selection is performed by a variational approach according to Girolami 2001 and Palmer et al. 2006.
The prior has finite support, therefore after each
update of the loadings they are projected to the finite support.
The projection is done according to Hoyer, 2004: given an
-norm and an
-norm minimize the Euclidean distance
to the original vector (currently the
-norm is fixed to 1).
The projection is a convex quadratic problem which is solved
iteratively where at each iteration at least one component is set to
zero. Instead of the
-norm a sparseness measurement is used
which relates the
-norm to the
-norm.
The code is implemented in C.
object of the class |
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’, Neural Computation 13(11): 2517-2532, 2001.
J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.
Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.
fabia
,
fabias
,
fabiap
,
spfabia
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabias(X,3,0.6,50) ## Not run: #----------------- # DEMO1: Toy Data #----------------- n = 1000 l= 100 p = 10 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] ZC <- dat[[3]] LC <- dat[[4]] gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab #### FABIAS resToy2 <- fabias(X,13,0.6,400) extractPlot(resToy2,ti="FABIAS",Y=Y) raToy2 <- extractBic(resToy2) if ((raToy2$bic[[1]][1]>1) && (raToy2$bic[[1]][2])>1) { plotBicluster(raToy2,1) } if ((raToy2$bic[[2]][1]>1) && (raToy2$bic[[2]][2])>1) { plotBicluster(raToy2,2) } if ((raToy2$bic[[3]][1]>1) && (raToy2$bic[[3]][2])>1) { plotBicluster(raToy2,3) } if ((raToy2$bic[[4]][1]>1) && (raToy2$bic[[4]][2])>1) { plotBicluster(raToy2,4) } colnames(X(resToy2)) <- clab rownames(X(resToy2)) <- llab plot(resToy2,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy2,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy2,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------------------------------ # DEMO2: Laura van't Veer's gene expression # data set for breast cancer #------------------------------------------ avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast2 <- fabias(X,5,0.6,300) extractPlot(resBreast2,ti="FABIAS Breast cancer(Veer)") raBreast2 <- extractBic(resBreast2) if ((raBreast2$bic[[1]][1]>1) && (raBreast2$bic[[1]][2])>1) { plotBicluster(raBreast2,1) } if ((raBreast2$bic[[2]][1]>1) && (raBreast2$bic[[2]][2])>1) { plotBicluster(raBreast2,2) } if ((raBreast2$bic[[3]][1]>1) && (raBreast2$bic[[3]][2])>1) { plotBicluster(raBreast2,3) } if ((raBreast2$bic[[4]][1]>1) && (raBreast2$bic[[4]][2])>1) { plotBicluster(raBreast2,4) } plot(resBreast2,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) } #----------------------------------- # DEMO3: Su's multiple tissue types # gene expression data set #----------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti2 <- fabias(X,5,0.6,300) extractPlot(resMulti2,ti="FABIAS Multiple tissues(Su)") raMulti2 <- extractBic(resMulti2) if ((raMulti2$bic[[1]][1]>1) && (raMulti2$bic[[1]][2])>1) { plotBicluster(raMulti2,1) } if ((raMulti2$bic[[2]][1]>1) && (raMulti2$bic[[2]][2])>1) { plotBicluster(raMulti2,2) } if ((raMulti2$bic[[3]][1]>1) && (raMulti2$bic[[3]][2])>1) { plotBicluster(raMulti2,3) } if ((raMulti2$bic[[4]][1]>1) && (raMulti2$bic[[4]][2])>1) { plotBicluster(raMulti2,4) } plot(resMulti2,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) } #----------------------------------------- # DEMO4: Rosenwald's diffuse large-B-cell # lymphoma gene expression data set #----------------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL2 <- fabias(X,5,0.6,300) extractPlot(resDLBCL2,ti="FABIAS Lymphoma(Rosenwald)") raDLBCL2 <- extractBic(resDLBCL2) if ((raDLBCL2$bic[[1]][1]>1) && (raDLBCL2$bic[[1]][2])>1) { plotBicluster(raDLBCL2,1) } if ((raDLBCL2$bic[[2]][1]>1) && (raDLBCL2$bic[[2]][2])>1) { plotBicluster(raDLBCL2,2) } if ((raDLBCL2$bic[[3]][1]>1) && (raDLBCL2$bic[[3]][2])>1) { plotBicluster(raDLBCL2,3) } if ((raDLBCL2$bic[[4]][1]>1) && (raDLBCL2$bic[[4]][2])>1) { plotBicluster(raDLBCL2,4) } plot(resDLBCL2,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) } ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabias(X,3,0.6,50) ## Not run: #----------------- # DEMO1: Toy Data #----------------- n = 1000 l= 100 p = 10 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] ZC <- dat[[3]] LC <- dat[[4]] gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab #### FABIAS resToy2 <- fabias(X,13,0.6,400) extractPlot(resToy2,ti="FABIAS",Y=Y) raToy2 <- extractBic(resToy2) if ((raToy2$bic[[1]][1]>1) && (raToy2$bic[[1]][2])>1) { plotBicluster(raToy2,1) } if ((raToy2$bic[[2]][1]>1) && (raToy2$bic[[2]][2])>1) { plotBicluster(raToy2,2) } if ((raToy2$bic[[3]][1]>1) && (raToy2$bic[[3]][2])>1) { plotBicluster(raToy2,3) } if ((raToy2$bic[[4]][1]>1) && (raToy2$bic[[4]][2])>1) { plotBicluster(raToy2,4) } colnames(X(resToy2)) <- clab rownames(X(resToy2)) <- llab plot(resToy2,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy2,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy2,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------------------------------ # DEMO2: Laura van't Veer's gene expression # data set for breast cancer #------------------------------------------ avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast2 <- fabias(X,5,0.6,300) extractPlot(resBreast2,ti="FABIAS Breast cancer(Veer)") raBreast2 <- extractBic(resBreast2) if ((raBreast2$bic[[1]][1]>1) && (raBreast2$bic[[1]][2])>1) { plotBicluster(raBreast2,1) } if ((raBreast2$bic[[2]][1]>1) && (raBreast2$bic[[2]][2])>1) { plotBicluster(raBreast2,2) } if ((raBreast2$bic[[3]][1]>1) && (raBreast2$bic[[3]][2])>1) { plotBicluster(raBreast2,3) } if ((raBreast2$bic[[4]][1]>1) && (raBreast2$bic[[4]][2])>1) { plotBicluster(raBreast2,4) } plot(resBreast2,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast2,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) } #----------------------------------- # DEMO3: Su's multiple tissue types # gene expression data set #----------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti2 <- fabias(X,5,0.6,300) extractPlot(resMulti2,ti="FABIAS Multiple tissues(Su)") raMulti2 <- extractBic(resMulti2) if ((raMulti2$bic[[1]][1]>1) && (raMulti2$bic[[1]][2])>1) { plotBicluster(raMulti2,1) } if ((raMulti2$bic[[2]][1]>1) && (raMulti2$bic[[2]][2])>1) { plotBicluster(raMulti2,2) } if ((raMulti2$bic[[3]][1]>1) && (raMulti2$bic[[3]][2])>1) { plotBicluster(raMulti2,3) } if ((raMulti2$bic[[4]][1]>1) && (raMulti2$bic[[4]][2])>1) { plotBicluster(raMulti2,4) } plot(resMulti2,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti2,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) } #----------------------------------------- # DEMO4: Rosenwald's diffuse large-B-cell # lymphoma gene expression data set #----------------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL2 <- fabias(X,5,0.6,300) extractPlot(resDLBCL2,ti="FABIAS Lymphoma(Rosenwald)") raDLBCL2 <- extractBic(resDLBCL2) if ((raDLBCL2$bic[[1]][1]>1) && (raDLBCL2$bic[[1]][2])>1) { plotBicluster(raDLBCL2,1) } if ((raDLBCL2$bic[[2]][1]>1) && (raDLBCL2$bic[[2]][2])>1) { plotBicluster(raDLBCL2,2) } if ((raDLBCL2$bic[[3]][1]>1) && (raDLBCL2$bic[[3]][2])>1) { plotBicluster(raDLBCL2,3) } if ((raDLBCL2$bic[[4]][1]>1) && (raDLBCL2$bic[[4]][2])>1) { plotBicluster(raDLBCL2,4) } plot(resDLBCL2,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL2,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) } ## End(Not run)
fabiasp
: R implementation of fabias
, therefore it is slow.
fabiasp(X,p=13,alpha=0.6,cyc=500,spz=0.5,center=2,norm=1,lap=1.0)
fabiasp(X,p=13,alpha=0.6,cyc=500,spz=0.5,center=2,norm=1,lap=1.0)
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 13. |
alpha |
sparseness loadings (0.1 - 1.0); default = 0.6. |
cyc |
number of iterations; default = 500. |
spz |
sparseness factors (0.5 - 2.0); default = 0.5 (Laplace). |
center |
data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2. |
norm |
data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1. |
lap |
minimal value of the variational parameter; default = 1.0. |
Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
,
from
.
If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
The model selection is performed by a variational approach according to Girolami 2001 and Palmer et al. 2006.
The prior has finite support, therefore after each
update of the loadings they are projected to the finite support.
The projection is done according to Hoyer, 2004: given an
-norm and an
-norm minimize the Euclidean distance
to the original vector (currently the
-norm is fixed to 1).
The projection is a convex quadratic problem which is solved
iteratively where at each iteration at least one component is set to
zero. Instead of the
-norm a sparseness measurement is used
which relates the
-norm to the
-norm.
The code is implemented in R, therefore it is slow.
object of the class |
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’, Neural Computation 13(11): 2517-2532, 2001.
J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.
Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.
fabia
,
fabias
,
fabiap
,
spfabia
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabiasp(X,3,0.6,50) ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabiasp(X,13,0.6,200) extractPlot(resToy,"ti=FABIASP",Y=Y) #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabiasp(X,5,0.6,200) extractPlot(resBreast,ti="FABIASP Breast cancer(Veer)") #sorting of predefined labels CBreast } #--------------- # DEMO3 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti <- fabiasp(X,5,0.6,200) extractPlot(resMulti,"ti=FABIASP Multiple tissues(Su)") #sorting of predefined labels CMulti } #--------------- # DEMO4 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL <- fabiasp(X,5,0.6,200) extractPlot(resDLBCL,ti="FABIASP Lymphoma(Rosenwald)") #sorting of predefined labels CDLBCL } ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabiasp(X,3,0.6,50) ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabiasp(X,13,0.6,200) extractPlot(resToy,"ti=FABIASP",Y=Y) #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabiasp(X,5,0.6,200) extractPlot(resBreast,ti="FABIASP Breast cancer(Veer)") #sorting of predefined labels CBreast } #--------------- # DEMO3 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti <- fabiasp(X,5,0.6,200) extractPlot(resMulti,"ti=FABIASP Multiple tissues(Su)") #sorting of predefined labels CMulti } #--------------- # DEMO4 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL <- fabiasp(X,5,0.6,200) extractPlot(resDLBCL,ti="FABIASP Lymphoma(Rosenwald)") #sorting of predefined labels CDLBCL } ## End(Not run)
fabiaVersion
displays version information about the
package.
fabiaVersion()
fabiaVersion()
Displays version information
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
spfabia
,
readSpfabiaResult
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
fabiaVersion()
fabiaVersion()
Factorization
is a class to store results of matrix
factorization algorithms. It has been designed for biclustering but
can be used for "principal component analysis",
"singular value decomposition", "independent component analysis",
"factor analysis", and "non-negative matrix factorization".
## S4 method for signature 'Factorization' plot(x, Rm=NULL, Cm=NULL, dim = c(1, 2), zoom = rep(1, 2), col.group = NULL, colors = c("orange1", "red", rainbow(length(unique(col.group)), start=2/6, end=4/6)), col.areas = TRUE, col.symbols = c(1, rep(2, length(unique(col.group)))), sampleNames = TRUE, rot = rep(-1, length(dim)), labels = NULL, label.tol = 0.1, lab.size = 0.725, col.size = 10, row.size = 10, do.smoothScatter = FALSE, do.plot = TRUE, ... ) ## S4 method for signature 'Factorization' show(object) ## S4 method for signature 'Factorization' showSelected(object, which=c(1,2,3,4)) ## S4 method for signature 'Factorization' summary(object, ...)
## S4 method for signature 'Factorization' plot(x, Rm=NULL, Cm=NULL, dim = c(1, 2), zoom = rep(1, 2), col.group = NULL, colors = c("orange1", "red", rainbow(length(unique(col.group)), start=2/6, end=4/6)), col.areas = TRUE, col.symbols = c(1, rep(2, length(unique(col.group)))), sampleNames = TRUE, rot = rep(-1, length(dim)), labels = NULL, label.tol = 0.1, lab.size = 0.725, col.size = 10, row.size = 10, do.smoothScatter = FALSE, do.plot = TRUE, ... ) ## S4 method for signature 'Factorization' show(object) ## S4 method for signature 'Factorization' showSelected(object, which=c(1,2,3,4)) ## S4 method for signature 'Factorization' summary(object, ...)
PLOT: |
|
x |
object of the class |
Rm |
row weighting vector. If |
Cm |
column weighting vector. If |
dim |
optional principal factors that are plotted along the
horizontal and vertical axis. Defaults to |
zoom |
optional zoom factor for row and column items. Defaults to
|
col.group |
optional vector (character or numeric) indicating the different groupings of the columns. Defaults to 1. |
colors |
vector specifying the colors for the annotation of the plot;
the first two elements concern the rows; the third till the last element
concern the columns; the first element will be used to color the unlabeled
rows; the second element for the labeled rows and the remaining elements to
give different colors to different groups of columns. Defaults to
|
col.areas |
logical value indicating whether columns should be
plotted as squares with areas proportional to their marginal mean
and colors representing the different groups ( |
col.symbols |
vector of symbols when |
sampleNames |
either a logical vector of length one or a character vector
of length equal to the number of samples in the dataset. If a
logical is provided, sample names will be displayed on the plot
( |
rot |
rotation of plot. Defaults to |
labels |
character vector to be used for labeling points on the graph;
if |
label.tol |
numerical value specifying either the percentile
( |
lab.size |
size of identifying labels for row- and column-items
as |
col.size |
size of the column symbols in mm. Defaults to |
row.size |
size of the row symbols in mm. Defaults to |
do.smoothScatter |
use smoothScatter or not instead of plotting
individual points. Defaults to |
do.plot |
produce a plot or not. Defaults to |
... |
further arguments are passed on to |
SHOW: |
|
object |
An instance of |
SHOWSELECTED: |
|
see |
|
which |
used to provide a list of which plots should be generated: 1=the information content of biclusters, 2=the information content of samples, 3=the loadings per bicluster, 4=the factors per bicluster, default c(1,2,3,4). |
SUMMARY: |
|
see |
|
... further arguments. |
Produces a biplot of a matrix factorization result stored in an instance of the Factorization class.
The function plot
is based on
the function plot.mpm
in the R package mpm
(Version: 1.0-16, Date: 2009-08-26, Title: Multivariate Projection
Methods, Maintainer: Tobias Verbeke <[email protected]>,
Author: Luc Wouters <[email protected]>).
Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
,
from
.
For noise free projection like independent component analysis
we set the noise term to zero: .
The argument label.tol
can be used to select the
most informative rows, i.e. rows that are most distant from the
center of the plot
(smaller 1: percentage of rows, larger 1: number of rows).
Only these row-items are then labeled and represented as circles with their areas proportional to the row weighting.
If the column-items are grouped these groups can be visualized by
colors given by col.group
.
Statistics of a matrix factorization result stored in an instance of the Factorization class.
This function supplies statistics on a matrix factorization result
which is stored as an instance of
Factorization-class
.
The following is plotted:
the information content of biclusters.
the information content of samples.
the loadings per bicluster.
the factors per bicluster.
Lists selected statistics of a matrix factorization result stored in an instance of the Factorization class.
This function supplies selected statistics on a matrix factorization result
which is stored as an instance of
Factorization-class
.
The following is plotted depending on the display selection
variable which
:
the information content of biclusters.
the information content of samples.
the loadings per bicluster.
the factors per bicluster.
Summary of matrix factorization result stored in an instance of the Factorization class.
This function gives information on a matrix factorization result
which is stored as an instance of
Factorization-class
.
The summary consists of following items:
the number or rows and columns of the original matrix.
the number of clusters for rows and columns is given.
for the row cluster the information content is given.
for each column its information is given.
for each column cluster a summary is given.
for each row cluster a summary is given.
FACTORIZATION: |
|
An instance of |
|
PLOT: |
|
Rows |
a list with the X and Y coordinates of the rows and
an indication |
Columns |
a list with the X and Y coordinates of the columns. |
SHOW: |
|
no value. |
|
SHOWSELECTED: |
|
no value. |
|
SUMMARY: |
|
no value. |
Objects of class Factorization
have the following slots:
parameters
:Saves parameters of the factorization method in a list: ("method","number of cycles","sparseness weight","sparseness prior for loadings","sparseness prior for factors","number biclusters","projection sparseness loadings", "projection sparseness factors","initialization range","are loadings rescaled after each iterations","normalization = scaling of rows","centering method of rows","parameter for method").
n
:number of rows, left dimension.
p1
:right dimension of left matrix.
p2
:left dimension of right matrix.
l
:number of columns, right dimension.
center
:vector of the centers.
scaleData
:vector of the scaling factors.
X
:centered and scaled data matrix n x l.
L
:left matrix n x p1.
Z
:right matrix p2 x l.
M
:middle matrix p1 x p2.
LZ
:matrix L x M x Z.
U
:noise matrix.
avini
:information of each bicluster, vector of length p2.
xavini
:information extracted from each sample, vector of length l.
ini
:information of each bicluster in each sample, matrix p2 x l.
Psi
:noise variance per row, vector of length n.
lapla
:prior information for each sample, vector of length l.
Constructor of class Factorization.
Factorization(parameters=list(),n=1,p1=1,p2=1,l=1,center=as.vector(1),scaleData=as.vector(1),X=as.matrix(1),L=as.matrix(1),Z=as.matrix(1),M=as.matrix(1),LZ=as.matrix(1),U=as.matrix(1),avini=as.vector(1),xavini=as.vector(1),ini=as.matrix(1),Psi=as.vector(1),lapla=as.matrix(1))
In the following x
denotes a Factorization object.
parameters(x)
, parameters(x) <- value
:
Returns or sets parameters
, where the return value and
value
are both an instance of list
. Parameters of the factorization
method are stored in a list: ("method","number of cycles","sparseness
weight","sparseness prior for loadings","sparseness prior for
factors","number biclusters","projection sparseness loadings",
"projection sparseness factors","initialization range","are loadings
rescaled after each iterations","normalization = scaling of
rows","centering method of rows","parameter for method").
n(x)
, n(x) <- value
:
Returns or sets n
, where the return value and
value
are both an instance of numeric
. Number of rows, left dimension.
p1(x)
, p1(x) <- value
:
Returns or sets p1
, where the return value and
value
are both an instance of numeric
. Right dimension of left matrix
p2(x)
, p2(x) <- value
:
Returns or sets p2
, where the return value and
value
are both an instance of numeric
.
Left dimension of right matrix.
l(x)
, l(x) <- value
:
Returns or sets l
, where the return value and
value
are both an instance of numeric
.
Number of columns, right dimension.
center(x)
, center(x) <- value
:
Returns or sets center
, where the return value and
value
are both an instance of numeric
.
Vector of the centers.
scaleData(x)
, scaleData(x) <- value
:
Returns or sets scaleData
, where the return value and
value
are both an instance of numeric
.
Vector of the scaling factors.
X(x)
, X(x) <- value
:
Returns or sets X
, where the return value and
value
are both an instance of matrix
.
Centered and scaled data matrix n x l.
L(x)
, L(x) <- value
:
Returns or sets L
, where the return value and
value
are both an instance of matrix
.
Left matrix n x p1.
Z(x)
, Z(x) <- value
:
Returns or sets Z
, where the return value and
value
are both an instance of matrix
.
Right matrix p2 x l.
M(x)
, M(x) <- value
:
Returns or sets M
, where the return value and
value
are both an instance of matrix
.
Middle matrix p1 x p2.
LZ(x)
, LZ(x) <- value
:
Returns or sets LZ
, where the return value and
value
are both an instance of matrix
.
Matrix L x M x Z.
U(x)
, U(x) <- value
:
Returns or sets U
, where the return value and
value
are both an instance of matrix
.
Noise matrix.
avini(x)
, avini(x) <- value
:
Returns or sets avini
, where the return value and
value
are both an instance of numeric
.
Information of each bicluster, vector
of length p2.
xavini(x)
, xavini(x) <- value
:
Returns or sets xavini
, where the return value and
value
are both an instance of numeric
.
Information extracted from each sample, vector
of length l.
ini(x)
, ini(x) <- value
:
Returns or sets ini
, where the return value and
value
are both an instance of matrix
.
Information of each bicluster in each
sample, matrix p2 x l.
Psi(x)
, Psi(x) <- value
:
Returns or sets Psi
, where the return value and
value
are both an instance of numeric
.
Noise variance per row, vector of length n.
lapla(x)
, lapla(x) <- value
:
Returns or sets lapla
, where the return value and
value
are both an instance of matrix
.
Prior information for each sample,
vector of length l.
signature(x = "Factorization", y = "missing")
Plot of a matrix factorization result
signature(object = "Factorization")
Display statistics of a matrix factorization result
signature(object = "Factorization", which =
"numeric")
Display particular statistics of a matrix factorization result
signature(object = "Factorization")
Summary of matrix factorization result
Factorization objects are returned by fabia
, fabias
, fabiap
,
fabiasp
, mfsc
, nmfsc
,
nmfdiv
, and nmfeu
.
The class Factorization
may contain the result of different matrix factorization
methods. The methods may be generative or not.
Methods my be "singular value decomposition" (M contains singular values as well as avini, L and Z are orthonormal matrices), "independent component analysis" (Z contains the projection/sources, L is the mixing matrix, M is unity), "factor analysis" (Z contains factors, L the loadings, M is unity, U the noise, Psi the noise covariance, lapla is a variational parameter for non-Gaussian factors, avini and ini are the information the factors convey about the observations).
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
################### # TEST ################### #------------------ # PLOT #------------------ n=200 l=100 p=4 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] ZC <- dat[[3]] LC <- dat[[4]] resEx <- fabia(X,p,0.01,400) gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab colnames(X(resEx)) <- clab rownames(X(resEx)) <- llab plot(resEx,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resEx,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resEx,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------ # SHOW #------------------ dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] resEx <- fabia(X,3,0.01,100) show(resEx) #------------------ # SHOWSELECTED #------------------ dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] resEx <- fabia(X,3,0.01,100) showSelected(resEx,which=1) showSelected(resEx,which=2) #------------------ # SUMMARY #------------------ dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] resEx <- fabia(X,3,0.01,100) summary(resEx)
################### # TEST ################### #------------------ # PLOT #------------------ n=200 l=100 p=4 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] ZC <- dat[[3]] LC <- dat[[4]] resEx <- fabia(X,p,0.01,400) gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab colnames(X(resEx)) <- clab rownames(X(resEx)) <- llab plot(resEx,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resEx,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resEx,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------ # SHOW #------------------ dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] resEx <- fabia(X,3,0.01,100) show(resEx) #------------------ # SHOWSELECTED #------------------ dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] resEx <- fabia(X,3,0.01,100) showSelected(resEx,which=1) showSelected(resEx,which=2) #------------------ # SUMMARY #------------------ dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] resEx <- fabia(X,3,0.01,100) summary(resEx)
makeFabiaData
: R implementation of makeFabiaData
.
makeFabiaData(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l_noise,mean_l,sd_l)
makeFabiaData(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l_noise,mean_l,sd_l)
n |
number of observations. |
l |
number of samples. |
p |
number of biclusters. |
f1 |
nn/f1 max. additional samples are active in a bicluster. |
f2 |
n/f2 max. additional observations that form a pattern in a bicluster. |
of1 |
minimal active samples in a bicluster. |
of2 |
minimal observations that form a pattern in a bicluster. |
sd_noise |
Gaussian zero mean noise std on data matrix. |
sd_z_noise |
Gaussian zero mean noise std for deactivated hidden factors. |
mean_z |
Gaussian mean for activated factors. |
sd_z |
Gaussian std for activated factors. |
sd_l_noise |
Gaussian zero mean noise std if no observation patterns are present. |
mean_l |
Gaussian mean for observation patterns. |
sd_l |
Gaussian std for observation patterns. |
Essentially the data generation model is the sum of outer products of sparse vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
and noise free
Here are from
,
from
,
from
,
from
, and
,
,
from
.
Sequentially are generated using
n
, f2
, of2
, sd_l_noise
, mean_l
,
sd_l
.
of2
gives the minimal observations participating in a
bicluster to which between 0 and observations are added,
where the number is uniformly chosen.
sd_l_noise
gives the
noise of observations not participating in the
bicluster. mean_l
and sd_l
determines the Gaussian from
which the values are drawn for the observations that participate in
the bicluster. The sign of the mean is randomly chosen for each
component.
Sequentially are generated using
l
, f1
, of1
, sd_z_noise
, mean_z
,
sd_z
.
of1
gives the minimal samples participating in a
bicluster to which between 0 and samples are added,
where the number is uniformly chosen.
sd_z_noise
gives the
noise of samples not participating in the
bicluster. mean_z
and sd_z
determines the Gaussian from
which the values are drawn for the samples that participate in
the bicluster.
is the overall Gaussian zero mean
noise generated by
sd_noise
.
Implementation in R.
X |
the noise data from |
Y |
the noise free data from |
ZC |
list where i-th element gives samples belonging to i-th bicluster. |
LC |
list where i-th element gives observations belonging to i-th bicluster. |
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaData(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaData(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaData(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaData(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## End(Not run)
makeFabiaDataBlocks
: R implementation of makeFabiaDataBlocks
.
makeFabiaDataBlocks(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l_noise,mean_l,sd_l)
makeFabiaDataBlocks(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l_noise,mean_l,sd_l)
n |
number of observations. |
l |
number of samples. |
p |
number of biclusters. |
f1 |
nn/f1 max. additional samples are active in a bicluster. |
f2 |
n/f2 max. additional observations that form a pattern in a bicluster. |
of1 |
minimal active samples in a bicluster. |
of2 |
minimal observations that form a pattern in a bicluster. |
sd_noise |
Gaussian zero mean noise std on data matrix. |
sd_z_noise |
Gaussian zero mean noise std for deactivated hidden factors. |
mean_z |
Gaussian mean for activated factors. |
sd_z |
Gaussian std for activated factors. |
sd_l_noise |
Gaussian zero mean noise std if no observation patterns are present. |
mean_l |
Gaussian mean for observation patterns. |
sd_l |
Gaussian std for observation patterns. |
Bicluster data is generated for visualization because the biclusters are now in block format. That means observations and samples that belong to a bicluster are consecutive. This allows visual inspection because the use can identify blocks and whether they have been found or reconstructed.
Essentially the data generation model is the sum of outer products of sparse vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
and noise free
Here are from
,
from
,
from
,
from
, and
,
,
from
.
Sequentially are generated using
n
, f2
, of2
, sd_l_noise
, mean_l
,
sd_l
.
of2
gives the minimal observations participating in a
bicluster to which between 0 and observations are added,
where the number is uniformly chosen.
sd_l_noise
gives the
noise of observations not participating in the
bicluster. mean_l
and sd_l
determines the Gaussian from
which the values are drawn for the observations that participate in
the bicluster. The sign of the mean is randomly chosen for each
component.
Sequentially are generated using
l
, f1
, of1
, sd_z_noise
, mean_z
,
sd_z
.
of1
gives the minimal samples participating in a
bicluster to which between 0 and samples are added,
where the number is uniformly chosen.
sd_z_noise
gives the
noise of samples not participating in the
bicluster. mean_z
and sd_z
determines the Gaussian from
which the values are drawn for the samples that participate in
the bicluster.
is the overall Gaussian zero mean
noise generated by
sd_noise
.
Implementation in R.
Y |
the noise data from |
X |
the noise free data from |
ZC |
list where i-th element gives samples belonging to i-th bicluster. |
LC |
list where i-th element gives observations belonging to i-th bicluster. |
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) Y <- dat[[1]] X <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) Y <- dat[[1]] X <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## End(Not run)
makeFabiaDataBlocksPos
: R implementation of makeFabiaDataBlocksPos
.
makeFabiaDataBlocksPos(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l_noise,mean_l,sd_l)
makeFabiaDataBlocksPos(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l_noise,mean_l,sd_l)
n |
number of observations. |
l |
number of samples. |
p |
number of biclusters. |
f1 |
nn/f1 max. additional samples are active in a bicluster. |
f2 |
n/f2 max. additional observations that form a pattern in a bicluster. |
of1 |
minimal active samples in a bicluster. |
of2 |
minimal observations that form a pattern in a bicluster. |
sd_noise |
Gaussian zero mean noise std on data matrix. |
sd_z_noise |
Gaussian zero mean noise std for deactivated hidden factors. |
mean_z |
Gaussian mean for activated factors. |
sd_z |
Gaussian std for activated factors. |
sd_l_noise |
Gaussian zero mean noise std if no observation patterns are present. |
mean_l |
Gaussian mean for observation patterns. |
sd_l |
Gaussian std for observation patterns. |
Bicluster data is generated for visualization because the biclusters are now in block format. That means observations and samples that belong to a bicluster are consecutive. This allows visual inspection because the use can identify blocks and whether they have been found or reconstructed.
Essentially the data generation model is the sum of outer products of sparse vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
and noise free
Here are from
,
from
,
from
,
from
, and
,
,
from
.
Sequentially are generated using
n
, f2
, of2
, sd_l_noise
, mean_l
,
sd_l
.
of2
gives the minimal observations participating in a
bicluster to which between 0 and observations are added,
where the number is uniformly chosen.
sd_l_noise
gives the
noise of observations not participating in the
bicluster. mean_l
and sd_l
determines the Gaussian from
which the values are drawn for the observations that participate in
the bicluster. "POS": The sign of the mean is fixed.
Sequentially are generated using
l
, f1
, of1
, sd_z_noise
, mean_z
,
sd_z
.
of1
gives the minimal samples participating in a
bicluster to which between 0 and samples are added,
where the number is uniformly chosen.
sd_z_noise
gives the
noise of samples not participating in the
bicluster. mean_z
and sd_z
determines the Gaussian from
which the values are drawn for the samples that participate in
the bicluster.
is the overall Gaussian zero mean
noise generated by
sd_noise
.
Implementation in R.
Y |
the noise data from |
X |
the noise free data from |
ZC |
list where i-th element gives samples belonging to i-th bicluster. |
LC |
list where i-th element gives observations belonging to i-th bicluster. |
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocksPos(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocksPos(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) Y <- dat[[1]] X <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocksPos(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocksPos(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) Y <- dat[[1]] X <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## End(Not run)
makeFabiaDataPos
: R implementation of makeFabiaDataPos
.
makeFabiaDataPos(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l_noise,mean_l,sd_l)
makeFabiaDataPos(n,l,p,f1,f2,of1,of2,sd_noise,sd_z_noise, mean_z,sd_z,sd_l_noise,mean_l,sd_l)
n |
number of observations. |
l |
number of samples. |
p |
number of biclusters. |
f1 |
nn/f1 max. additional samples are active in a bicluster. |
f2 |
n/f2 max. additional observations that form a pattern in a bicluster. |
of1 |
minimal active samples in a bicluster. |
of2 |
minimal observations that form a pattern in a bicluster. |
sd_noise |
Gaussian zero mean noise std on data matrix. |
sd_z_noise |
Gaussian zero mean noise std for deactivated hidden factors. |
mean_z |
Gaussian mean for activated factors. |
sd_z |
Gaussian std for activated factors. |
sd_l_noise |
Gaussian zero mean noise std if no observation patterns are present. |
mean_l |
Gaussian mean for observation patterns. |
sd_l |
Gaussian std for observation patterns. |
Essentially the data generation model is the sum of outer products of sparse vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
and noise free
Here are from
,
from
,
from
,
from
, and
,
,
from
.
Sequentially are generated using
n
, f2
, of2
, sd_l_noise
, mean_l
,
sd_l
.
of2
gives the minimal observations participating in a
bicluster to which between 0 and observations are added,
where the number is uniformly chosen.
sd_l_noise
gives the
noise of observations not participating in the
bicluster. mean_l
and sd_l
determines the Gaussian from
which the values are drawn for the observations that participate in
the bicluster. "POS": The sign of the mean is fixed.
Sequentially are generated using
l
, f1
, of1
, sd_z_noise
, mean_z
,
sd_z
.
of1
gives the minimal samples participating in a
bicluster to which between 0 and samples are added,
where the number is uniformly chosen.
sd_z_noise
gives the
noise of samples not participating in the
bicluster. mean_z
and sd_z
determines the Gaussian from
which the values are drawn for the samples that participate in
the bicluster.
is the overall Gaussian zero mean
noise generated by
sd_noise
.
Implementation in R.
X |
the noise data from |
Y |
the noise free data from |
ZC |
list where i-th element gives samples belonging to i-th bicluster. |
LC |
list where i-th element gives observations belonging to i-th bicluster. |
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataPos(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataPos(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataPos(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataPos(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## End(Not run)
matrixImagePlot
: R implementation of myImagePlot
.
matrixImagePlot(x,xLabels=NULL, yLabels=NULL, zlim=NULL, title=NULL)
matrixImagePlot(x,xLabels=NULL, yLabels=NULL, zlim=NULL, title=NULL)
x |
the matrix. |
xLabels |
vector of strings to label the columns (default "colnames(x)"). |
yLabels |
vector of strings to label the rows (default "rownames(x)"). |
zlim |
vector containing a low and high value to use for the color scale. |
title |
title of the plot. |
Plotting a table of numbers as an image using R.
The color scale is based on the highest and lowest values in the matrix.
The original R code has been obtained by http://www.phaget4.org/R/myImagePlot.R and then has been modified.
Plotting a table of numbers as an image
http://www.phaget4.org/R/myImagePlot.R
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- X- rowMeans(X) XX <- (1/ncol(X))*tcrossprod(X) dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X)))) X <- dXX*X matrixImagePlot(X) ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] matrixImagePlot(Y) dev.new() matrixImagePlot(X) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- X- rowMeans(X) XX <- (1/ncol(X))*tcrossprod(X) dXX <- 1/sqrt(diag(XX)+0.001*as.vector(rep(1,nrow(X)))) X <- dXX*X matrixImagePlot(X) ## End(Not run)
mfsc
: R implementation of mfsc
.
mfsc(X,p=5,cyc=100,sL=0.6,sZ=0.6,center=2,norm=1)
mfsc(X,p=5,cyc=100,sL=0.6,sZ=0.6,center=2,norm=1)
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 5. |
cyc |
maximal number of iterations; default = 100. |
sL |
final sparseness loadings; default = 0.6. |
sZ |
final sparseness factors; default = 0.6. |
center |
data centering: 1 (mean), 2 (median), > 2 (mode), 0 (no); default = 2. |
norm |
data normalization: 1 (0.75-0.25 quantile), >1 (var=1), 0 (no); default = 1. |
Biclusters are found by sparse matrix factorization where both factors are sparse.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
from
.
No noise assumption: In contrast to factor analysis there is no noise assumption.
If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
The model selection is performed by a constraint optimization according to Hoyer, 2004. The Euclidean distance (the Frobenius norm) is minimized subject to sparseness constraints.
Model selection is done by gradient descent on the Euclidean
objective and thereafter projection of single vectors of
and single vectors of
to fulfill the sparseness constraints.
The projection minimize the Euclidean distance
to the original vector given an
-norm and an
-norm.
The projection is a convex quadratic problem which is solved
iteratively where at each iteration at least one component is set to
zero. Instead of the -norm a sparseness measurement is used
which relates the
-norm to the
-norm.
The code is implemented in R.
object of the class |
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- mfsc(X,3,30,0.6,0.6) ## Not run: #----------------- # DEMO1: Toy Data #----------------- n = 1000 l= 100 p = 10 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] ZC <- dat[[3]] LC <- dat[[4]] gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab #### MFSC resToy4 <- mfsc(X,13,100,0.6,0.6) extractPlot(resToy4,ti="MFSC",Y=Y) raToy4 <- extractBic(resToy4,thresZ=0.01,thresL=0.05) if ((raToy4$bic[[1]][1]>1) && (raToy4$bic[[1]][2])>1) { plotBicluster(raToy4,1) } if ((raToy4$bic[[2]][1]>1) && (raToy4$bic[[2]][2])>1) { plotBicluster(raToy4,2) } if ((raToy4$bic[[3]][1]>1) && (raToy4$bic[[3]][2])>1) { plotBicluster(raToy4,3) } if ((raToy4$bic[[4]][1]>1) && (raToy4$bic[[4]][2])>1) { plotBicluster(raToy4,4) } colnames(X(resToy4)) <- clab rownames(X(resToy4)) <- llab plot(resToy4,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy4,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy4,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------------------------------ # DEMO2: Laura van't Veer's gene expression # data set for breast cancer #------------------------------------------ avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast4 <- mfsc(X,5,100,0.6,0.6) extractPlot(resBreast4,ti="MFSC Breast cancer(Veer)") raBreast4 <- extractBic(resBreast4,thresZ=0.01,thresL=0.05) if ((raBreast4$bic[[1]][1]>1) && (raBreast4$bic[[1]][2])>1) { plotBicluster(raBreast4,1) } if ((raBreast4$bic[[2]][1]>1) && (raBreast4$bic[[2]][2])>1) { plotBicluster(raBreast4,2) } if ((raBreast4$bic[[3]][1]>1) && (raBreast4$bic[[3]][2])>1) { plotBicluster(raBreast4,3) } if ((raBreast4$bic[[4]][1]>1) && (raBreast4$bic[[4]][2])>1) { plotBicluster(raBreast4,4) } plot(resBreast4,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) } #----------------------------------- # DEMO3: Su's multiple tissue types # gene expression data set #----------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti4 <- mfsc(X,5,100,0.6,0.6) extractPlot(resMulti4,ti="MFSC Multiple tissues(Su)") raMulti4 <- extractBic(resMulti4,thresZ=0.01,thresL=0.05) if ((raMulti4$bic[[1]][1]>1) && (raMulti4$bic[[1]][2])>1) { plotBicluster(raMulti4,1) } if ((raMulti4$bic[[2]][1]>1) && (raMulti4$bic[[2]][2])>1) { plotBicluster(raMulti4,2) } if ((raMulti4$bic[[3]][1]>1) && (raMulti4$bic[[3]][2])>1) { plotBicluster(raMulti4,3) } if ((raMulti4$bic[[4]][1]>1) && (raMulti4$bic[[4]][2])>1) { plotBicluster(raMulti4,4) } plot(resMulti4,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) } #----------------------------------------- # DEMO4: Rosenwald's diffuse large-B-cell # lymphoma gene expression data set #----------------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL4 <- mfsc(X,5,100,0.6,0.6) extractPlot(resDLBCL4,ti="MFSC Lymphoma(Rosenwald)") raDLBCL4 <- extractBic(resDLBCL4,thresZ=0.01,thresL=0.05) if ((raDLBCL4$bic[[1]][1]>1) && (raDLBCL4$bic[[1]][2])>1) { plotBicluster(raDLBCL4,1) } if ((raDLBCL4$bic[[2]][1]>1) && (raDLBCL4$bic[[2]][2])>1) { plotBicluster(raDLBCL4,2) } if ((raDLBCL4$bic[[3]][1]>1) && (raDLBCL4$bic[[3]][2])>1) { plotBicluster(raDLBCL4,3) } if ((raDLBCL4$bic[[4]][1]>1) && (raDLBCL4$bic[[4]][2])>1) { plotBicluster(raDLBCL4,4) } plot(resDLBCL4,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) } ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- mfsc(X,3,30,0.6,0.6) ## Not run: #----------------- # DEMO1: Toy Data #----------------- n = 1000 l= 100 p = 10 dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] ZC <- dat[[3]] LC <- dat[[4]] gclab <- rep.int(0,l) gllab <- rep.int(0,n) clab <- as.character(1:l) llab <- as.character(1:n) for (i in 1:p){ for (j in ZC[i]){ clab[j] <- paste(as.character(i),"_",clab[j],sep="") } for (j in LC[i]){ llab[j] <- paste(as.character(i),"_",llab[j],sep="") } gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i } groups <- gclab #### MFSC resToy4 <- mfsc(X,13,100,0.6,0.6) extractPlot(resToy4,ti="MFSC",Y=Y) raToy4 <- extractBic(resToy4,thresZ=0.01,thresL=0.05) if ((raToy4$bic[[1]][1]>1) && (raToy4$bic[[1]][2])>1) { plotBicluster(raToy4,1) } if ((raToy4$bic[[2]][1]>1) && (raToy4$bic[[2]][2])>1) { plotBicluster(raToy4,2) } if ((raToy4$bic[[3]][1]>1) && (raToy4$bic[[3]][2])>1) { plotBicluster(raToy4,3) } if ((raToy4$bic[[4]][1]>1) && (raToy4$bic[[4]][2])>1) { plotBicluster(raToy4,4) } colnames(X(resToy4)) <- clab rownames(X(resToy4)) <- llab plot(resToy4,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy4,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6) plot(resToy4,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6) #------------------------------------------ # DEMO2: Laura van't Veer's gene expression # data set for breast cancer #------------------------------------------ avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast4 <- mfsc(X,5,100,0.6,0.6) extractPlot(resBreast4,ti="MFSC Breast cancer(Veer)") raBreast4 <- extractBic(resBreast4,thresZ=0.01,thresL=0.05) if ((raBreast4$bic[[1]][1]>1) && (raBreast4$bic[[1]][2])>1) { plotBicluster(raBreast4,1) } if ((raBreast4$bic[[2]][1]>1) && (raBreast4$bic[[2]][2])>1) { plotBicluster(raBreast4,2) } if ((raBreast4$bic[[3]][1]>1) && (raBreast4$bic[[3]][2])>1) { plotBicluster(raBreast4,3) } if ((raBreast4$bic[[4]][1]>1) && (raBreast4$bic[[4]][2])>1) { plotBicluster(raBreast4,4) } plot(resBreast4,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) plot(resBreast4,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6) } #----------------------------------- # DEMO3: Su's multiple tissue types # gene expression data set #----------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Multi_A) X <- as.matrix(XMulti) resMulti4 <- mfsc(X,5,100,0.6,0.6) extractPlot(resMulti4,ti="MFSC Multiple tissues(Su)") raMulti4 <- extractBic(resMulti4,thresZ=0.01,thresL=0.05) if ((raMulti4$bic[[1]][1]>1) && (raMulti4$bic[[1]][2])>1) { plotBicluster(raMulti4,1) } if ((raMulti4$bic[[2]][1]>1) && (raMulti4$bic[[2]][2])>1) { plotBicluster(raMulti4,2) } if ((raMulti4$bic[[3]][1]>1) && (raMulti4$bic[[3]][2])>1) { plotBicluster(raMulti4,3) } if ((raMulti4$bic[[4]][1]>1) && (raMulti4$bic[[4]][2])>1) { plotBicluster(raMulti4,4) } plot(resMulti4,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) plot(resMulti4,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6) } #----------------------------------------- # DEMO4: Rosenwald's diffuse large-B-cell # lymphoma gene expression data set #----------------------------------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(DLBCL_B) X <- as.matrix(XDLBCL) resDLBCL4 <- mfsc(X,5,100,0.6,0.6) extractPlot(resDLBCL4,ti="MFSC Lymphoma(Rosenwald)") raDLBCL4 <- extractBic(resDLBCL4,thresZ=0.01,thresL=0.05) if ((raDLBCL4$bic[[1]][1]>1) && (raDLBCL4$bic[[1]][2])>1) { plotBicluster(raDLBCL4,1) } if ((raDLBCL4$bic[[2]][1]>1) && (raDLBCL4$bic[[2]][2])>1) { plotBicluster(raDLBCL4,2) } if ((raDLBCL4$bic[[3]][1]>1) && (raDLBCL4$bic[[3]][2])>1) { plotBicluster(raDLBCL4,3) } if ((raDLBCL4$bic[[4]][1]>1) && (raDLBCL4$bic[[4]][2])>1) { plotBicluster(raDLBCL4,4) } plot(resDLBCL4,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) plot(resDLBCL4,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6) } ## End(Not run)
nmfdiv
: R implementation of nmfdiv
.
nmfdiv(X,p=5,cyc=100)
nmfdiv(X,p=5,cyc=100)
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 5. |
cyc |
maximal number of iterations; default = 100. |
Non-negative Matrix Factorization represents positive matrix
by positive matrices
and
.
Objective for reconstruction is Kullback-Leibler divergence.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
from
.
The model selection is performed according to D. D. Lee and H. S. Seung, 1999, 2001.
The code is implemented in R.
object of the class |
Sepp Hochreiter
D. D. Lee and H. S. Seung, ‘Algorithms for non-negative matrix factorization’, In Advances in Neural Information Processing Systems 13, 556-562, 2001.
D. D. Lee and H. S. Seung, ‘Learning the parts of objects by non-negative matrix factorization’, Nature, 401(6755):788-791, 1999.
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resEx <- nmfdiv(X,3) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resToy <- nmfdiv(X,13) extractPlot(resToy,ti="NMFDIV",Y=Y) ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resEx <- nmfdiv(X,3) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resToy <- nmfdiv(X,13) extractPlot(resToy,ti="NMFDIV",Y=Y) ## End(Not run)
nmfeu
: R implementation of nmfeu
.
nmfeu(X,p=5,cyc=100)
nmfeu(X,p=5,cyc=100)
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 5. |
cyc |
maximal number of iterations; default = 100. |
Non-negative Matrix Factorization represents positive matrix
by positive matrices
and
.
Objective for reconstruction is Euclidean distance.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
from
.
The model selection is performed according to D. D. Lee and H. S. Seung, 2001.
The code is implemented in R.
object of the class |
Sepp Hochreiter
Paatero, P and Tapper, U, ‘Least squares formulation of robust non-negative factor analysis’, Chemometr. Intell. Lab. 37: 23-35, 1997.
D. D. Lee and H. S. Seung, ‘Algorithms for non-negative matrix factorization’, In Advances in Neural Information Processing Systems 13, 556-562, 2001.
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resEx <- nmfeu(X,3) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resToy <- nmfeu(X,13) extractPlot(resToy,ti="NMFEU",Y=Y) ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resEx <- nmfeu(X,3) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resToy <- nmfeu(X,13) extractPlot(resToy,ti="NMFEU",Y=Y) ## End(Not run)
nmfsc
: R implementation of nmfsc
.
nmfsc(X,p=5,cyc=100,sL=0.6,sZ=0.6)
nmfsc(X,p=5,cyc=100,sL=0.6,sZ=0.6)
X |
the data matrix. |
p |
number of hidden factors = number of biclusters; default = 5. |
cyc |
maximal number of iterations; default = 100. |
sL |
sparseness loadings; default = 0.6. |
sZ |
sparseness factors; default = 0.6. |
Non-negative Matrix Factorization represents positive matrix
by positive matrices
and
that are sparse.
Objective for reconstruction is Euclidean distance and sparseness constraints.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
from
.
If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
The model selection is performed by a constraint optimization according to Hoyer, 2004. The Euclidean distance (the Frobenius norm) is minimized subject to sparseness and non-negativity constraints.
Model selection is done by gradient descent on the Euclidean
objective and thereafter projection of single vectors of
and single vectors of
to fulfill the sparseness and non-negativity constraints.
The projection minimize the Euclidean distance
to the original vector given an
-norm and an
-norm and enforcing non-negativity.
The projection is a convex quadratic problem which is solved
iteratively where at each iteration at least one component is set to
zero. Instead of the -norm a sparseness measurement is used
which relates the
-norm to the
-norm.
The code is implemented in R.
object of the class |
Sepp Hochreiter
Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.
D. D. Lee and H. S. Seung, ‘Algorithms for non-negative matrix factorization’, In Advances in Neural Information Processing Systems 13, 556-562, 2001.
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resEx <- nmfsc(X,3,30,0.6,0.6) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resToy <- nmfsc(X,13,100,0.6,0.6) extractPlot(resToy,ti="NMFSC",Y=Y) ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resEx <- nmfsc(X,3,30,0.6,0.6) ## Not run: #--------------- # DEMO #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] X <- abs(X) resToy <- nmfsc(X,13,100,0.6,0.6) extractPlot(resToy,ti="NMFSC",Y=Y) ## End(Not run)
plotBicluster
: R implementation of plotBicluster
.
plotBicluster(r,p,opp=FALSE,zlim=NULL,title=NULL,which=c(1, 2))
plotBicluster(r,p,opp=FALSE,zlim=NULL,title=NULL,which=c(1, 2))
r |
the result of extract_bic. |
p |
the bicluster to plot. |
opp |
plot opposite bicluster, default = FALSE. |
zlim |
vector containing a low and high value to use for the color scale. |
title |
title of the plot. |
which |
which plots are shown: 1=data matrix with bicluster on upper left, 2=plot of the bicluster; default c(1, 2). |
One bicluster is visualized by two plots. The variable "which" indicates which plots should be shown.
Plot1 (which=1): The data matrix is sorted such that the bicluster appear at the upper left corner. The bicluster is marked by a rectangle.
Plot2 (which=2): Only the bicluster is plotted.
Implementation in R.
Plotting of a bicluster
Sepp Hochreiter
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabia(X,3,0.01,20) rEx <- extractBic(resEx) plotBicluster(rEx,p=1) ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabia(X,13,0.01,200) rToy <- extractBic(resToy) plotBicluster(rToy,p=1) #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabia(X,5,0.1,200) rBreast <- extractBic(resBreast) plotBicluster(rBreast,p=1) } ## End(Not run)
#--------------- # TEST #--------------- dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resEx <- fabia(X,3,0.01,20) rEx <- extractBic(resEx) plotBicluster(rEx,p=1) ## Not run: #--------------- # DEMO1 #--------------- dat <- makeFabiaDataBlocks(n = 1000,l= 100,p = 10,f1 = 5,f2 = 5, of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0, sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0) X <- dat[[1]] Y <- dat[[2]] resToy <- fabia(X,13,0.01,200) rToy <- extractBic(resToy) plotBicluster(rToy,p=1) #--------------- # DEMO2 #--------------- avail <- require(fabiaData) if (!avail) { message("") message("") message("#####################################################") message("Package 'fabiaData' is not available: please install.") message("#####################################################") } else { data(Breast_A) X <- as.matrix(XBreast) resBreast <- fabia(X,5,0.1,200) rBreast <- extractBic(resBreast) plotBicluster(rBreast,p=1) } ## End(Not run)
projFunc
: R implementation of projFunc
.
projFunc(s, k1, k2)
projFunc(s, k1, k2)
s |
data vector. |
k1 |
sparseness, l1 norm constraint. |
k2 |
l2 norm constraint. |
The projection is done according to Hoyer, 2004: given an
-norm and an
-norm minimize the Euclidean distance
to the original vector.
The projection is a convex quadratic problem which is solved
iteratively where at each iteration at least one component is set to
zero.
In the applications,
instead of the -norm a sparseness measurement is used
which relates the
-norm to the
-norm.
Implementation in R.
v |
sparse projected vector. |
Sepp Hochreiter
Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # DEMO #--------------- size <- 30 sparseness <- 0.7 s <- as.vector(rnorm(size)) sp <- sqrt(1.0*size)-(sqrt(1.0*size)-1.0)*sparseness ss <- projFunc(s,k1=sp,k2=1) s ss
#--------------- # DEMO #--------------- size <- 30 sparseness <- 0.7 s <- as.vector(rnorm(size)) sp <- sqrt(1.0*size)-(sqrt(1.0*size)-1.0)*sparseness ss <- projFunc(s,k1=sp,k2=1) s ss
projFuncPos
: R implementation of projFuncPos
.
projFuncPos(s, k1, k2)
projFuncPos(s, k1, k2)
s |
data vector. |
k1 |
sparseness, l1 norm constraint. |
k2 |
l2 norm constraint. |
The projection minimize the Euclidean distance
to the original vector given an
-norm and an
-norm and enforcing non-negativity.
The projection is a convex quadratic problem which is solved iteratively where at each iteration at least one component is set to zero.
In the applications,
instead of the -norm a sparseness measurement is used
which relates the
-norm to the
-norm:
Implementation in R.
v |
non-negative sparse projected vector. |
Sepp Hochreiter
Patrik O. Hoyer, ‘Non-negative Matrix Factorization with Sparseness Constraints’, Journal of Machine Learning Research 5:1457-1469, 2004.
fabia
,
fabias
,
fabiap
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # DEMO #--------------- size <- 30 sparseness <- 0.7 s <- as.vector(rnorm(size)) sp <- sqrt(1.0*size)-(sqrt(1.0*size)-1.0)*sparseness ss <- projFuncPos(s,k1=sp,k2=1) s ss
#--------------- # DEMO #--------------- size <- 30 sparseness <- 0.7 s <- as.vector(rnorm(size)) sp <- sqrt(1.0*size)-(sqrt(1.0*size)-1.0)*sparseness ss <- projFuncPos(s,k1=sp,k2=1) s ss
readSamplesSpfabia
: C implementation of readSamplesSpfabia
.
readSamplesSpfabia(X,samples=0,lowerB=0.0,upperB=1000.0)
readSamplesSpfabia(X,samples=0,lowerB=0.0,upperB=1000.0)
X |
the file name of the sparse matrix in sparse format. |
samples |
vector of samples which should be read; default = 0 (all samples) |
lowerB |
lower bound for filtering the inputs columns, the minimal column sum; default = 0.0. |
upperB |
upper bound for filtering the inputs columns, the maximal column sum; default = 1000.0. |
The data matrix is directly scanned by the C-code and must be in sparse matrix format.
Sparse matrix format: *first line: numer of rows (the samples). *second line: number of columns (the features). *following lines: for each sample (row) three lines with
I) number of nonzero row elements
II) indices of the nonzero row elements (ATTENTION: starts with 0!!)
III) values of the nonzero row elements (ATTENTION: floats with decimal point like 1.0 !!)
The code is implemented in C.
X
(data of the given samples)
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
fabia
,
fabias
,
fabiap
,
spfabia
,
readSamplesSpfabia
,
readSpfabiaResult
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #---------------
#--------------- # TEST #---------------
readSpfabiaResult
: C implementation of readSpfabiaResult
.
readSpfabiaResult(X)
readSpfabiaResult(X)
X |
the file prefix name of the result files of spfabia. |
Read the results of spfabia.
The code is implemented in C.
object of the class |
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
fabia
,
fabias
,
fabiap
,
spfabia
,
readSamplesSpfabia
,
readSpfabiaResult
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
samplesPerFeature
: C implementation of samplesPerFeature
.
samplesPerFeature(X,samples=0,lowerB=0.0,upperB=1000.0)
samplesPerFeature(X,samples=0,lowerB=0.0,upperB=1000.0)
X |
the file name of the sparse matrix in sparse format. |
samples |
vector of samples which should be read; default = 0 (all samples) |
lowerB |
lower bound for filtering the inputs columns, the minimal column sum; default = 0.0. |
upperB |
upper bound for filtering the inputs columns, the maximal column sum; default = 1000.0. |
Supplies the samples for which a feature is not zero.
The data matrix is directly scanned by the C-code and must be in sparse matrix format.
Sparse matrix format: *first line: numer of rows (the samples). *second line: number of columns (the features). *following lines: for each sample (rows) three lines with
I) number of nonzero row elements
II) indices of the nonzero row elements (ATTENTION: starts with 0!!)
III) values of the nonzero row elements (ATTENTION: floats with decimal point like 1.0 !!)
The code is implemented in C.
list with elements:
|
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
fabia
,
fabias
,
fabiap
,
spfabia
,
readSamplesSpfabia
,
samplesPerFeature
,
readSpfabiaResult
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #---------------
#--------------- # TEST #---------------
spfabia
: C implementation of spfabia
.
spfabia(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,non_negative=0,random=1.0,write_file=1,norm=1,scale=0.0,lap=1.0,nL=0,lL=0,bL=0,samples=0,initL=0,iter=1,quant=0.001,lowerB=0.0,upperB=1000.0,dorescale=FALSE,doini=FALSE,eps=1e-3,eps1=1e-10)
spfabia(X,p=13,alpha=0.01,cyc=500,spl=0,spz=0.5,non_negative=0,random=1.0,write_file=1,norm=1,scale=0.0,lap=1.0,nL=0,lL=0,bL=0,samples=0,initL=0,iter=1,quant=0.001,lowerB=0.0,upperB=1000.0,dorescale=FALSE,doini=FALSE,eps=1e-3,eps1=1e-10)
X |
the file name of the sparse matrix in sparse format. |
p |
number of hidden factors = number of biclusters; default = 13. |
alpha |
sparseness loadings (0 - 1.0); default = 0.01. |
cyc |
number of iterations; default = 500. |
spl |
sparseness prior loadings (0 - 2.0); default = 0 (Laplace). |
spz |
sparseness factors (0.5 - 2.0); default = 0.5 (Laplace). |
non_negative |
Non-negative factors and loadings if non_negative > 0; default = 0. |
random |
>0: random initialization of loadings in [0,random], <0: random initialization of loadings in [-random,random]; default = 1.0. |
write_file |
>0: results are written to files (L in sparse format), default = 1. |
norm |
data normalization: >0 (var=1), 0 (no); default = 1. |
scale |
loading vectors are scaled in each iteration to the given variance. 0.0 indicates non scaling; default = 0.0. |
lap |
minimal value of the variational parameter; default = 1.0. |
nL |
maximal number of biclusters at which a row element can participate; default = 0 (no limit). |
lL |
maximal number of row elements per bicluster; default = 0 (no limit). |
bL |
cycle at which the nL or lL maximum starts; default = 0 (start at the beginning). |
samples |
vector of samples which should be included into the analysis; default = 0 (all samples) |
initL |
vector of indices of the selected samples which are used to initialize L; default = 0 (random initialization). |
iter |
number of iterations; default = 1. |
quant |
qunatile of largest L values to remove in each iteration; default = 0.001. |
lowerB |
lower bound for filtering the inputs columns, the minimal column sum; default = 0.0. |
upperB |
upper bound for filtering the inputs columns, the maximal column sum; default = 1000.0. |
dorescale |
rescale factors Z to variance 1 and consequently also L; logical; default: FALSE. |
doini |
compute the information content of the biclusters and sort the biclusters according to their information content; logical, default: FALSE. |
eps |
lower bound for variational parameter lapla; default: 1e-3. |
eps1 |
lower bound for divisions to avoid division by zero; default: 1e-10. |
Version of fabia for a sparse data matrix. The data matrix is directly scanned by the C-code and must be in sparse matrix format.
Sparse matrix format: *first line: numer of rows (the samples). *second line: number of columns (the features). *following lines: for each sample (row) three lines with
I) number of nonzero row elements
II) indices of the nonzero row elements (ATTENTION: starts with 0!!)
III) values of the nonzero row elements (ATTENTION: floats with decimal point like 1.0 !!)
Biclusters are found by sparse factor analysis where both the factors and the loadings are sparse.
Essentially the model is the sum of outer products of vectors:
where the number of summands
is the number of biclusters.
The matrix factorization is
Here are from
,
from
,
from
,
from
, and
,
from
.
If the nonzero components of the sparse vectors are grouped together then the outer product results in a matrix with a nonzero block and zeros elsewhere.
The model selection is performed by a variational approach according to Girolami 2001 and Palmer et al. 2006.
We included a prior on the parameters and minimize a lower bound on the posterior of the parameters given the data. The update of the loadings includes an additive term which pushes the loadings toward zero (Gaussian prior leads to an multiplicative factor).
The code is implemented in C.
object of the class |
Sepp Hochreiter
S. Hochreiter et al., ‘FABIA: Factor Analysis for Bicluster Acquisition’, Bioinformatics 26(12):1520-1527, 2010. http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btq227
Mark Girolami, ‘A Variational Method for Learning Sparse and Overcomplete Representations’, Neural Computation 13(11): 2517-2532, 2001.
J. Palmer, D. Wipf, K. Kreutz-Delgado, B. Rao, ‘Variational EM algorithms for non-Gaussian latent variable models’, Advances in Neural Information Processing Systems 18, pp. 1059-1066, 2006.
fabia
,
fabias
,
fabiap
,
spfabia
,
readSamplesSpfabia
,
samplesPerFeature
,
readSpfabiaResult
,
fabi
,
fabiasp
,
mfsc
,
nmfdiv
,
nmfeu
,
nmfsc
,
extractPlot
,
extractBic
,
plotBicluster
,
Factorization
,
projFuncPos
,
projFunc
,
estimateMode
,
makeFabiaData
,
makeFabiaDataBlocks
,
makeFabiaDataPos
,
makeFabiaDataBlocksPos
,
matrixImagePlot
,
fabiaDemo
,
fabiaVersion
#--------------- # TEST #--------------- samples <- 20 features <- 200 sparseness <- 0.9 write(samples, file = "sparseFabiaTest.txt",ncolumns = features,append = FALSE, sep = " ") write(features, file = "sparseFabiaTest.txt",ncolumns = features,append = TRUE, sep = " ") for (i in 1:samples) { ind <- which(runif(features)>sparseness)-1 num <- length(ind) val <- abs(rnorm(num)) write(num, file = "sparseFabiaTest.txt",ncolumns = features,append = TRUE, sep = " ") write(ind, file = "sparseFabiaTest.txt",ncolumns = features,append = TRUE, sep = " ") write(val, file = "sparseFabiaTest.txt",ncolumns = features,append = TRUE, sep = " ") } res <- spfabia("sparseFabiaTest",p=3,alpha=0.03,cyc=50,non_negative=1,write_file=0,norm=0) unlink("sparseFabiaTest.txt") plot(res,dim=c(1,2)) plot(res,dim=c(1,3)) plot(res,dim=c(2,3))
#--------------- # TEST #--------------- samples <- 20 features <- 200 sparseness <- 0.9 write(samples, file = "sparseFabiaTest.txt",ncolumns = features,append = FALSE, sep = " ") write(features, file = "sparseFabiaTest.txt",ncolumns = features,append = TRUE, sep = " ") for (i in 1:samples) { ind <- which(runif(features)>sparseness)-1 num <- length(ind) val <- abs(rnorm(num)) write(num, file = "sparseFabiaTest.txt",ncolumns = features,append = TRUE, sep = " ") write(ind, file = "sparseFabiaTest.txt",ncolumns = features,append = TRUE, sep = " ") write(val, file = "sparseFabiaTest.txt",ncolumns = features,append = TRUE, sep = " ") } res <- spfabia("sparseFabiaTest",p=3,alpha=0.03,cyc=50,non_negative=1,write_file=0,norm=0) unlink("sparseFabiaTest.txt") plot(res,dim=c(1,2)) plot(res,dim=c(1,3)) plot(res,dim=c(2,3))