Package: MOFA2 1.17.0
MOFA2: Multi-Omics Factor Analysis v2
The MOFA2 package contains a collection of tools for training and analysing multi-omic factor analysis (MOFA). MOFA is a probabilistic factor model that aims to identify principal axes of variation from data sets that can comprise multiple omic layers and/or groups of samples. Additional time or space information on the samples can be incorporated using the MEFISTO framework, which is part of MOFA2. Downstream analysis functions to inspect molecular features underlying each factor, vizualisation, imputation etc are available.
Authors:
MOFA2_1.17.0.tar.gz
MOFA2_1.17.0.zip(r-4.5)MOFA2_1.17.0.zip(r-4.4)MOFA2_1.17.0.zip(r-4.3)
MOFA2_1.17.0.tgz(r-4.4-any)MOFA2_1.17.0.tgz(r-4.3-any)
MOFA2_1.17.0.tar.gz(r-4.5-noble)MOFA2_1.17.0.tar.gz(r-4.4-noble)
MOFA2_1.17.0.tgz(r-4.4-emscripten)MOFA2_1.17.0.tgz(r-4.3-emscripten)
MOFA2.pdf |MOFA2.html✨
MOFA2/json (API)
# Install 'MOFA2' in R: |
install.packages('MOFA2', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/biofam/mofa2/issues
On BioConductor:MOFA2-1.15.0(bioc 3.20)MOFA2-1.14.0(bioc 3.19)
dimensionreductionbayesianvisualizationfactor-analysismofamulti-omics
Last updated 23 days agofrom:12bde390fe. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | WARNING | Oct 30 2024 |
R-4.5-linux | WARNING | Oct 30 2024 |
R-4.4-win | WARNING | Oct 30 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
R-4.3-win | WARNING | Oct 30 2024 |
R-4.3-mac | WARNING | Oct 31 2024 |
Exports:%>%add_mofa_factors_to_seuratcalculate_contribution_scorescalculate_variance_explainedcalculate_variance_explained_per_samplecluster_samplescompare_elbocompare_factorscorrelate_factors_with_covariatescovariates_namescovariates_names<-create_mofacreate_mofa_from_dfcreate_mofa_from_matrixcreate_mofa_from_MultiAssayExperimentcreate_mofa_from_Seuratcreate_mofa_from_SingleCellExperimentfactors_namesfactors_names<-features_metadatafeatures_metadata<-features_namesfeatures_names<-get_covariatesget_dataget_default_data_optionsget_default_mefisto_optionsget_default_model_optionsget_default_stochastic_optionsget_default_training_optionsget_dimensionsget_elboget_expectationsget_factorsget_group_kernelget_imputed_dataget_interpolated_factorsget_lengthscalesget_scalesget_variance_explainedget_weightsgroups_namesgroups_names<-imputeinterpolate_factorsload_modelmake_example_dataplot_alignmentplot_ascii_dataplot_data_heatmapplot_data_overviewplot_data_scatterplot_data_vs_covplot_dimredplot_enrichmentplot_enrichment_detailedplot_enrichment_heatmapplot_factorplot_factor_corplot_factorsplot_factors_vs_covplot_group_kernelplot_interpolation_vs_covariateplot_sharednessplot_smoothnessplot_top_weightsplot_variance_explainedplot_variance_explained_by_covariatesplot_variance_explained_per_featureplot_weightsplot_weights_heatmapplot_weights_scatterpredictprepare_mofarun_enrichmentrun_mofarun_tsnerun_umapsamples_metadatasamples_metadata<-samples_namessamples_names<-select_modelset_covariatessubset_factorssubset_featuressubset_groupssubset_samplessubset_viewssummarise_factorsviews_namesviews_names<-
Dependencies:abindbasiliskbasilisk.utilsBHBiocGenericsclicolorspacecorrplotcowplotcpp11crayonDelayedArraydir.expirydplyrdqrngfansifarverfilelockFNNforcatsgenericsggplot2ggrepelgluegtableHDF5ArrayhereIRangesirlbaisobandjsonlitelabelinglatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmunsellnlmepheatmappillarpkgconfigplyrpngpurrrR6rappdirsRColorBrewerRcppRcppAnnoyRcppEigenRcppProgressRcppTOMLreshape2reticulaterhdf5rhdf5filtersRhdf5librlangrprojrootRSpectraRtsneS4ArraysS4VectorsscalessitmoSparseArraystringistringrtibbletidyrtidyselectutf8uwotvctrsviridisLitewithrXVectorzlibbioc
MOFA+: downstream analysis in R
Rendered fromdownstream_analysis.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2020-10-11
Started: 2020-10-01
Illustration of MEFISTO on simulated data with a temporal covariate
Rendered fromMEFISTO_temporal.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2022-10-07
Started: 2020-11-24
MOFA2: training a model in R
Rendered fromgetting_started_R.Rmd
usingknitr::rmarkdown
on Oct 30 2024.Last update: 2023-03-19
Started: 2020-10-01