Package: MOFA2 1.17.0
MOFA2: Multi-Omics Factor Analysis v2
The MOFA2 package contains a collection of tools for training and analysing multi-omic factor analysis (MOFA). MOFA is a probabilistic factor model that aims to identify principal axes of variation from data sets that can comprise multiple omic layers and/or groups of samples. Additional time or space information on the samples can be incorporated using the MEFISTO framework, which is part of MOFA2. Downstream analysis functions to inspect molecular features underlying each factor, vizualisation, imputation etc are available.
Authors:
MOFA2_1.17.0.tar.gz
MOFA2_1.17.0.zip(r-4.5)MOFA2_1.17.0.zip(r-4.4)MOFA2_1.17.0.zip(r-4.3)
MOFA2_1.17.0.tgz(r-4.4-any)MOFA2_1.17.0.tgz(r-4.3-any)
MOFA2_1.17.0.tar.gz(r-4.5-noble)MOFA2_1.17.0.tar.gz(r-4.4-noble)
MOFA2_1.17.0.tgz(r-4.4-emscripten)MOFA2_1.17.0.tgz(r-4.3-emscripten)
MOFA2.pdf |MOFA2.html✨
MOFA2/json (API)
# Install 'MOFA2' in R: |
install.packages('MOFA2', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/biofam/mofa2/issues
On BioConductor:MOFA2-1.17.0(bioc 3.21)MOFA2-1.16.0(bioc 3.20)
dimensionreductionbayesianvisualizationfactor-analysismofamulti-omics
Last updated 3 months agofrom:12bde390fe. Checks:1 OK, 6 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 29 2024 |
R-4.5-win | WARNING | Dec 31 2024 |
R-4.5-linux | WARNING | Dec 29 2024 |
R-4.4-win | WARNING | Dec 31 2024 |
R-4.4-mac | WARNING | Dec 29 2024 |
R-4.3-win | WARNING | Dec 31 2024 |
R-4.3-mac | WARNING | Dec 29 2024 |
Exports:%>%add_mofa_factors_to_seuratcalculate_contribution_scorescalculate_variance_explainedcalculate_variance_explained_per_samplecluster_samplescompare_elbocompare_factorscorrelate_factors_with_covariatescovariates_namescovariates_names<-create_mofacreate_mofa_from_dfcreate_mofa_from_matrixcreate_mofa_from_MultiAssayExperimentcreate_mofa_from_Seuratcreate_mofa_from_SingleCellExperimentfactors_namesfactors_names<-features_metadatafeatures_metadata<-features_namesfeatures_names<-get_covariatesget_dataget_default_data_optionsget_default_mefisto_optionsget_default_model_optionsget_default_stochastic_optionsget_default_training_optionsget_dimensionsget_elboget_expectationsget_factorsget_group_kernelget_imputed_dataget_interpolated_factorsget_lengthscalesget_scalesget_variance_explainedget_weightsgroups_namesgroups_names<-imputeinterpolate_factorsload_modelmake_example_dataplot_alignmentplot_ascii_dataplot_data_heatmapplot_data_overviewplot_data_scatterplot_data_vs_covplot_dimredplot_enrichmentplot_enrichment_detailedplot_enrichment_heatmapplot_factorplot_factor_corplot_factorsplot_factors_vs_covplot_group_kernelplot_interpolation_vs_covariateplot_sharednessplot_smoothnessplot_top_weightsplot_variance_explainedplot_variance_explained_by_covariatesplot_variance_explained_per_featureplot_weightsplot_weights_heatmapplot_weights_scatterpredictprepare_mofarun_enrichmentrun_mofarun_tsnerun_umapsamples_metadatasamples_metadata<-samples_namessamples_names<-select_modelset_covariatessubset_factorssubset_featuressubset_groupssubset_samplessubset_viewssummarise_factorsviews_namesviews_names<-
Dependencies:abindbasiliskbasilisk.utilsBHBiocGenericsclicolorspacecorrplotcowplotcpp11crayonDelayedArraydir.expirydplyrdqrngfansifarverfilelockFNNforcatsgenericsggplot2ggrepelgluegtableHDF5ArrayhereIRangesirlbaisobandjsonlitelabelinglatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmunsellnlmepheatmappillarpkgconfigplyrpngpurrrR6rappdirsRColorBrewerRcppRcppAnnoyRcppEigenRcppProgressRcppTOMLreshape2reticulaterhdf5rhdf5filtersRhdf5librlangrprojrootRSpectraRtsneS4ArraysS4VectorsscalessitmoSparseArraystringistringrtibbletidyrtidyselectutf8uwotvctrsviridisLitewithrXVector
MOFA+: downstream analysis in R
Rendered fromdownstream_analysis.Rmd
usingknitr::rmarkdown
on Dec 29 2024.Last update: 2020-10-11
Started: 2020-10-01
Illustration of MEFISTO on simulated data with a temporal covariate
Rendered fromMEFISTO_temporal.Rmd
usingknitr::rmarkdown
on Dec 29 2024.Last update: 2022-10-07
Started: 2020-11-24
MOFA2: training a model in R
Rendered fromgetting_started_R.Rmd
usingknitr::rmarkdown
on Dec 29 2024.Last update: 2023-03-19
Started: 2020-10-01