Package: GenProSeq 1.11.0

Dongmin Jung

GenProSeq: Generating Protein Sequences with Deep Generative Models

Generative modeling for protein engineering is key to solving fundamental problems in synthetic biology, medicine, and material science. Machine learning has enabled us to generate useful protein sequences on a variety of scales. Generative models are machine learning methods which seek to model the distribution underlying the data, allowing for the generation of novel samples with similar properties to those on which the model was trained. Generative models of proteins can learn biologically meaningful representations helpful for a variety of downstream tasks. Furthermore, they can learn to generate protein sequences that have not been observed before and to assign higher probability to protein sequences that satisfy desired criteria. In this package, common deep generative models for protein sequences, such as variational autoencoder (VAE), generative adversarial networks (GAN), and autoregressive models are available. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is applied to protein sequences for the autoregressive model.

Authors:Dongmin Jung [cre, aut]

GenProSeq_1.11.0.tar.gz
GenProSeq_1.11.0.zip(r-4.5)GenProSeq_1.11.0.zip(r-4.4)GenProSeq_1.11.0.zip(r-4.3)
GenProSeq_1.11.0.tgz(r-4.4-any)GenProSeq_1.11.0.tgz(r-4.3-any)
GenProSeq_1.11.0.tar.gz(r-4.5-noble)GenProSeq_1.11.0.tar.gz(r-4.4-noble)
GenProSeq_1.11.0.tgz(r-4.4-emscripten)GenProSeq_1.11.0.tgz(r-4.3-emscripten)
GenProSeq.pdf |GenProSeq.html
GenProSeq/json (API)
NEWS

# Install 'GenProSeq' in R:
install.packages('GenProSeq', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT
Datasets:

On BioConductor:GenProSeq-1.11.0(bioc 3.21)GenProSeq-1.10.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

softwareproteomicsopenjdk

4.30 score 3 scripts 132 downloads 11 exports 141 dependencies

Last updated 2 months agofrom:45b803f079. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 29 2024
R-4.5-winNOTENov 29 2024
R-4.5-linuxNOTENov 29 2024
R-4.4-winNOTENov 29 2024
R-4.4-macNOTENov 29 2024
R-4.3-winNOTENov 29 2024
R-4.3-macNOTENov 29 2024

Exports:fit_ARTfit_GANfit_VAEgen_ARTgen_GANgen_VAElayer_embedding_token_positionlayer_transformer_encoderprot_seq_checkprot2vecvec2prot

Dependencies:askpassbackportsbase64encBHbitbit64bslibcachemCatEncodersclicliprcolorspaceconfigcpp11crayoncurldata.tabledata.treeDeepPINCSDiagrammeRdigestdplyrdttenglishevaluatefansifarverfastmapfastmatchfingerprintfloatfontawesomefsgenericsglueherehighrhmshtmltoolshtmlwidgetshttrhunspelligraphISOcodesiteratorsitertoolsjquerylibjsonlitekerasknitrkoRpuskoRpus.lang.enlabelinglatticelexiconlgrlifecyclemagrittrmatlabMatrixMatrixExtramclustmemoisemgsubmimemlapimunsellNLPopensslpillarpkgconfigpngprettyunitsprocessxprogressPRROCpspurrrqdapRegexquantedaR6rappdirsrcdkrcdklibsRColorBrewerRcppRcppArmadilloRcppProgressRcppTOMLreadrreticulateRhpcBLASctlrJavarlangrmarkdownrprojrootrsparserstudioapirvestsassscalesselectrslamSnowballCstopwordsstringdiststringistringrsyllysylly.ensyssyuzhettensorflowtext2vectextcleantextshapetextstemtfautographtfrunstibbletidyrtidyselecttinytextmtokenizersttgseatzdbutf8vctrsviridisLitevisNetworkvroomwebchemwhiskerwithrword2vecxfunxml2yamlzeallotzoo

Generating Protein Sequences with Deep Generative Models

Rendered fromGenProSeq.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2024-02-03
Started: 2021-09-20