Package 'GenProSeq'

Title: Generating Protein Sequences with Deep Generative Models
Description: Generative modeling for protein engineering is key to solving fundamental problems in synthetic biology, medicine, and material science. Machine learning has enabled us to generate useful protein sequences on a variety of scales. Generative models are machine learning methods which seek to model the distribution underlying the data, allowing for the generation of novel samples with similar properties to those on which the model was trained. Generative models of proteins can learn biologically meaningful representations helpful for a variety of downstream tasks. Furthermore, they can learn to generate protein sequences that have not been observed before and to assign higher probability to protein sequences that satisfy desired criteria. In this package, common deep generative models for protein sequences, such as variational autoencoder (VAE), generative adversarial networks (GAN), and autoregressive models are available. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is applied to protein sequences for the autoregressive model.
Authors: Dongmin Jung [cre, aut]
Maintainer: Dongmin Jung <[email protected]>
License: Artistic-2.0
Version: 1.11.0
Built: 2024-12-29 05:23:37 UTC
Source: https://github.com/bioc/GenProSeq

Help Index


Autoregressive language model with Transformer

Description

The autoregressive generative model predicts the next amino acid in a protein given the amino acid sequence up to that point. The autoregressive model generates proteins one amino acid at a time. For one step of generation, it takes a context sequence of amino acids as input and outputs a probability distribution over amino acids. We sample from that distribution and then update the context sequence with the sampled amino acid. The Transformer is used as an encoder model. The AR with the Transformer model can be trained by the function "fit_ART", and then the function "gen_ART" generates protein sequences.

Usage

fit_ART(prot_seq,
        length_seq,
        embedding_dim,
        num_heads,
        ff_dim,
        num_transformer_blocks,
        layers = NULL,
        prot_seq_val = NULL,
        epochs,
        batch_size,
        preprocessing = list(
            x_train = NULL,
            x_val = NULL,
            y_train = NULL,
            y_val = NULL,
            lenc = NULL,
            length_seq = NULL,
            num_AA = NULL,
            embedding_dim = NULL,
            removed_prot_seq = NULL,
            removed_prot_seq_val = NULL),
        use_generator = FALSE,
        optimizer = "adam",
        metrics = "accuracy",
        validation_split = 0, ...) 

gen_ART(x,
        seed_prot,
        length_AA,
        method = NULL,
        b = NULL,
        t = 1,
        k = NULL,
        p = NULL)

Arguments

prot_seq

amino acid sequence

length_seq

length of sequence used as input

embedding_dim

dimension of the dense embedding

num_heads

number of attention heads

ff_dim

hidden layer size in feedforward network inside transformer

num_transformer_blocks

number of transformer blocks

layers

list of layers between the transformer encoder and the output layer (default: NULL)

prot_seq_val

amino acid sequence for validation (default: NULL)

epochs

number of epochs

batch_size

batch size

preprocessing

list of preprocessed results, they are set to NULL as default x_train, y_train, lenc, length_seq, num_AA, and embedding_dim must be required for training

  • x_train : embedded sequence data for train, result of the function "DeepPINCS::get_seq_encode_pad"

  • x_val : embedded sequence data for validation, result of the function "DeepPINCS::get_seq_encode_pad"

  • y_train : labels for train

  • y_val : labels for validation

  • lenc : encoded labels, result of the function "DeepPINCS::get_seq_encode_pad"

  • length_seq : length of sequence

  • num_AA : number of amino acids, result of the function "DeepPINCS::get_seq_encode_pad"

  • embedding_dim : dimension of the dense embedding

  • removed_prot_seq : index for removed protein sequences while checking

  • removed_prot_seq_val : index for removed protein sequences of validation

use_generator

use data generator if TRUE (default: FALSE)

optimizer

name of optimizer (default: adam)

metrics

name of metrics (default: accuracy)

validation_split

proportion of validation data, it is ignored when there is a validation set (default: 0)

...

additional parameters for the "fit"

x

result of the function "fit_ART"

seed_prot

sequence to be used as a seed protein

length_AA

length of amino acids to be generated

method

"greedy", "beam", "temperature", "top_k", or "top_p"

b

beam size in the beam search

t

temperature in the temperature sampling (default: 1)

k

number of amino acids in the top-k sampling

p

minimum probabilty for the set of amino acids in the top-p sampling

Value

model

trained ART model

preprocessing

preprocessed results

Author(s)

Dongmin Jung

References

Deepak, P., Chakraborty, T., & Long, C. (2021). Data Science for Fake News: Surveys and Perspectives (Vol. 42). Springer.

Liu, Z., Lin, Y., & Sun, M. (2020). Representation learning for natural language processing. Springer.

Madani, A., McCann, B., Naik, N., Keskar, N. S., Anand, N., Eguchi, R. R., Huang, P., & Socher, R. (2020). Progen: Language modeling for protein generation. arXiv:2004.03497.

See Also

keras::fit, keras::compile, ttgsea::sampling_generator, DeepPINCS::multiple_sampling_generator, DeepPINCS::seq_preprocessing, DeepPINCS::get_seq_encode_pad, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
    prot_seq <- DeepPINCS::SARS_CoV2_3CL_Protease
    
    # model parameters
    length_seq <- 10
    embedding_dim <- 16
    num_heads <- 2
    ff_dim <- 16
    num_transformer_blocks <- 2
    batch_size <- 32
    epochs <- 2
    
    # ART
    ART_result <- fit_ART(prot_seq = prot_seq,
                        length_seq = length_seq,
                        embedding_dim = embedding_dim,
                        num_heads = num_heads,
                        ff_dim = ff_dim,
                        num_transformer_blocks = num_transformer_blocks,
                        layers = list(layer_dropout(rate = 0.1),
                                    layer_dense(units = 32, activation = "relu"),
                                    layer_dropout(rate = 0.1)),
                        prot_seq_val = prot_seq,
                        epochs = epochs,
                        batch_size = batch_size,
                        use_generator = TRUE,
                        callbacks = callback_early_stopping(
                            monitor = "val_loss",
                            patience = 10,
                            restore_best_weights = TRUE))
    
    seed_prot <- "SGFRKMAFPS"
    gen_ART(ART_result, seed_prot, length_AA = 20, method = "greedy")
    gen_ART(ART_result, seed_prot, length_AA = 20, method = "beam", b = 5)
    gen_ART(ART_result, seed_prot, length_AA = 20, method = "temperature", t = 0.1)
    gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_k", k = 3)
    gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_p", p = 0.75)
    
    
    ### from preprocessing
    ART_result2 <- fit_ART(num_heads = 4,
                        ff_dim = 32,
                        num_transformer_blocks = 3,
                        layers = list(layer_dropout(rate=0.1),
                                    layer_dense(units=32, activation="relu"),
                                    layer_dropout(rate=0.1)),
                        epochs = epochs,
                        batch_size = batch_size,
                        preprocessing = ART_result$preprocessing,
                        use_generator = TRUE,
                        callbacks = callback_early_stopping(
                                monitor = "val_loss",
                                patience = 50,
                                restore_best_weights = TRUE))
    
    gen_ART(ART_result2, seed_prot, length_AA = 20, method = "greedy")
    gen_ART(ART_result2, seed_prot, length_AA = 20, method = "beam", b = 5)
    gen_ART(ART_result2, seed_prot, length_AA = 20, method = "temperature", t = 0.1)
    gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_k", k = 3)
    gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_p", p = 0.75)
}

Example Data for Protein Sequences

Description

The data consist of selected amino acid sequences of the luxA. There are 2283 aligned sequences of length 360.

Usage

example_luxA

Value

aligned amino acid sequences

Author(s)

Dongmin Jung

Source

Hawkins-Hooker, A., Depardieu, F., Baur, S., Couairon, G., Chen, A., & Bikard, D. (2020). Generating functional protein variants with variational autoencoders. bioRxiv.


Example Data for Protein Sequences

Description

The data consist of selected amino acid sequences of the PTEN. There are 912 aligned sequences of length 403.

Usage

example_PTEN

Value

aligned amino acid sequences

Author(s)

Dongmin Jung

Source

Frazer, J., Notin, P., Dias, M., Gomez, A., Brock, K., Gal, Y., & Marks, D. (2020). Large-scale clinical interpretation of genetic variants using evolutionary data and deep learning. bioRxiv.


Generative adversarial network for generating protein sequences

Description

The generative adversarial network (GAN) is made up of a discriminator and a generator that compete in a two-player minimax game. The objective of the generator is to produce an output that is so close to real that it confuses the discriminator in being able to differentiate the fake data from the real data. The conditional GAN (CGAN) is based on vanilla GAN with additional conditional input to generator and discriminator. The auxiliary classifier GAN (ACGAN) is an extension of CGAN that adds conditional input only to the generator. The Word2vec is applied to amino acids for embedding. The GAN or ACGAN model can be trained by the function "fit_GAN", and then the function "gen_GAN" generates protein sequences from the trained model.

Usage

fit_GAN(prot_seq,
        label = NULL,
        length_seq,
        embedding_dim,
        embedding_args = list(),
        latent_dim = NULL,
        intermediate_generator_layers,
        intermediate_discriminator_layers,
        prot_seq_val = NULL,
        label_val = NULL,
        epochs,
        batch_size,
        preprocessing = list(
            x_train = NULL,
            x_val = NULL,
            y_train = NULL,
            y_val = NULL,
            lenc = NULL,
            length_seq = NULL,
            num_seq = NULL,
            embedding_dim = NULL,
            embedding_matrix = NULL,
            removed_prot_seq = NULL,
            removed_prot_seq_val = NULL,
            latent_dim = NULL),
        optimizer = "adam",
        validation_split = 0)

gen_GAN(x,
        label = NULL,
        num_seq,
        remove_gap = TRUE)

Arguments

prot_seq

aligned amino acid sequence

label

label (default: NULL)

length_seq

length of sequence

embedding_dim

dimension of the dense embedding

embedding_args

list of arguments for "word2vec::word2vec" but for dim, min_count and split

latent_dim

dimension of latent vector (default: NULL)

intermediate_generator_layers

list of intermediate layers for generator, without input layer

intermediate_discriminator_layers

list of intermediate layers for discriminator, without output layer

prot_seq_val

amino acid sequence for validation (default: NULL)

label_val

label for validation (default: NULL)

epochs

number of epochs

batch_size

batch size

preprocessing

list of preprocessed results, they are set to NULL as default x_train, length_seq, num_seq, embedding_dim and embedding_matrix must be required for training

  • x_train : embedded sequence data for train

  • x_val : embedded sequence data for validation

  • y_train : labels for train

  • y_val : labels for validation

  • lenc : encoded labels

  • length_seq : length of sequence

  • num_seq : number of sequences for train

  • embedding_dim : dimension of the dense embedding

  • embedding_matrix : embedding matrix

  • removed_prot_seq : index for removed protein sequences while checking

  • removed_prot_seq_val : index for removed protein sequences of validation

  • latent_dim : dimension of latent vector

optimizer

name of optimizer (default: adam)

validation_split

proportion of validation data, it is ignored when there is a validation set (default: 0)

x

result of the function "fit_GAN"

num_seq

number of sequences to be generated

remove_gap

remove gaps from sequences (default: TRUE)

Value

model

trained GAN model

generator

trained generator model

discriminator

trained discriminator model

preprocessing

preprocessed results

gen_seq

generated sequence data

label

labels for generated sequence data

Author(s)

Dongmin Jung

References

Liebowitz, J. (Ed.). (2020). Data Analytics and AI. CRC Press.

Pedrycz, W., & Chen, S. M. (Eds.). (2020). Deep Learning: Concepts and Architectures. Springer.

Suguna, S. K., Dhivya, M., & Paiva, S. (Eds.). (2021). Artificial Intelligence (AI): Recent Trends and Applications. CRC Press.

Sun, S., Mao, L., Dong, Z., & Wu, L. (2019). Multiview machine learning. Springer.

See Also

keras::train_on_batch, keras::evaluate, keras::compile, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
    data("example_PTEN")
    # model parameters
    length_seq <- 403
    embedding_dim <- 8
    latent_dim <- 4
    epochs <- 2
    batch_size <- 64
    
    # GAN
    GAN_result <- fit_GAN(prot_seq = example_PTEN,
                        length_seq = length_seq,
                        embedding_dim = embedding_dim,
                        latent_dim = latent_dim,
                        intermediate_generator_layers = list(
                            layer_dense(units = 16),
                            layer_dense(units = 128)),
                        intermediate_discriminator_layers = list(
                            layer_dense(units = 128, activation = "relu"),
                            layer_dense(units = 16, activation = "relu")),
                        prot_seq_val = example_PTEN,
                        epochs = epochs,
                        batch_size = batch_size)
    set.seed(1)
    gen_prot_GAN <- gen_GAN(GAN_result, num_seq = 100)
    
    
    ### from preprocessing
    GAN_result2 <- fit_GAN(preprocessing = GAN_result$preprocessing,
                            intermediate_generator_layers = list(
                                layer_dense(units = 16),
                                layer_dense(units = 128)),
                            intermediate_discriminator_layers = list(
                                layer_dense(units = 128, activation = "relu"),
                                layer_dense(units = 16, activation = "relu")),
                            epochs = epochs,
                            batch_size = batch_size)
    gen_prot_GAN <- gen_GAN(GAN_result2, num_seq = 100)
}

Check a protein sequence

Description

The protein sequence dataset is filtered by eliminating sequences containing the non-amino acid characters (digits and blank spaces) from the amino acid sequences. A valid amino acid sequence means a string that only contains capital letters of an alphabet and a hyphen for a gap.

Usage

prot_seq_check(prot_seq, label = NULL)

Arguments

prot_seq

amino acid sequences

label

label (default: NULL)

Value

valid sequences

Author(s)

Dongmin Jung

References

Mukhopadhyay, C. S., Choudhary, R. K., & Iquebal, M. A. (2017). Basic Applied Bioinformatics. John Wiley & Sons.

Examples

data("example_PTEN")
prot_seq_check(example_PTEN[1])

Converting from protein sequences to vectors or vice versa.

Description

By using the word2vec model, amino acids are mapped to vectors of real numbers. Conceptually, it involves a mathematical embedding from a space with many dimensions per amino acid to a continuous vector space with a much lower dimension.

Usage

prot2vec(prot_seq, embedding_dim, embedding_matrix = NULL, ...)
vec2prot(prot_vec, embedding_matrix)

Arguments

prot_seq

protein sequences

prot_vec

protein embedding vectors

embedding_dim

dimension of embedding vectors

embedding_matrix

embedding matrix (default: NULL)

...

arguments for "word2vec::word2vec" but for dim, min_count and split

Value

prot_seq

protein sequences

prot_vec

protein embedding vectors

embedding_matrix

embedding matrix

Author(s)

Dongmin Jung

References

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. arXiv:1310.4546.

Chang, M. (2020). Artificial intelligence for drug development, precision medicine, and healthcare.

See Also

word2vec::word2vec, word2vec::word2vec_similarity

Examples

data("example_PTEN")
prot_seq <- example_PTEN[1:10]
prot2vec_result <- prot2vec(prot_seq = prot_seq, embedding_dim = 8)
vec2prot_result <- vec2prot(prot_vec = prot2vec_result$prot_vec,
                            embedding_matrix = prot2vec_result$embedding_matrix)

Transformer model

Description

The Transformer architecture is a nonrecurrent architecture with a series of attention-based blocks. Each block is composed of a multi-head attention layer and a position-wise feedforward layer with an add and normalize layer in between. These layers process input sequences simultaneously, in parallel, independently of sequential order.

Usage

layer_embedding_token_position(x, maxlen, vocab_size, embed_dim)
layer_transformer_encoder(x, embed_dim, num_heads, ff_dim, num_transformer_blocks)

Arguments

x

layer object

maxlen

maximum of sequence size

vocab_size

vacabulary size

embed_dim

embedding size for each token

num_heads

number of attention heads

ff_dim

hidden layer size in feedforward network inside transformer

num_transformer_blocks

number of transformer blocks

Value

layer object

Author(s)

Dongmin Jung

References

Lappin, S. (2021). Deep learning and linguistic representation. CRC Press.

Liu, Z., Lin, Y., & Sun, M. (2020). Representation learning for natural language processing. Springer.

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
    num_AA <- 20
    length_seq <- 10
    embedding_dim <- 16
    num_heads <- 2
    ff_dim <- 16
    num_transformer_blocks <- 2
    
    inputs <- layer_input(shape = length_seq)
    x <- inputs %>%
        layer_embedding_token_position(maxlen = length_seq,
                                    vocab_size = num_AA,
                                    embed_dim = embedding_dim) %>%
        layer_transformer_encoder(embed_dim = embedding_dim,
                                num_heads = num_heads,
                                ff_dim = ff_dim,
                                num_transformer_blocks = num_transformer_blocks) %>%
        layer_global_average_pooling_1d()
}

Variational autoencoder for generating protein sequences

Description

The variational autoencoder (VAE) is a class of autoencoder where the encoder module is used to learn the parameter of a distribution and the decoder is used to generate examples from samples drawn from the learned distribution. The conditional variational autoencoder (CVAE) is designed to generate desired samples by including additional conditioning information. Since there may be underlying distinctions between groups of samples, the Gaussian mixture model is used for sequence generation. The Word2vec is applied to amino acids for embedding. The VAE or CVAE model can be trained by the function "fit_VAE", and then the function "gen_VAE" generates protein sequences from the trained model.

Usage

fit_VAE(prot_seq,
        label = NULL,
        length_seq,
        embedding_dim,
        embedding_args = list(),
        latent_dim = 2,
        intermediate_encoder_layers,
        intermediate_decoder_layers,
        prot_seq_val = NULL,
        label_val = NULL,
        regularization = 1,
        epochs,
        batch_size,
        preprocessing = list(
            x_train = NULL,
            x_val = NULL,
            y_train = NULL,
            y_val = NULL,
            lenc = NULL,
            length_seq = NULL,
            embedding_dim = NULL,
            embedding_matrix = NULL,
            removed_prot_seq = NULL,
            removed_prot_seq_val = NULL),
        use_generator = FALSE,
        optimizer = "adam",
        validation_split = 0, ...)

gen_VAE(x,
        label = NULL,
        num_seq,
        remove_gap = TRUE,
        batch_size,
        use_generator = FALSE)

Arguments

prot_seq

aligned amino acid sequence

label

label (default: NULL)

length_seq

length of sequence

embedding_dim

dimension of the dense embedding

embedding_args

list of arguments for "word2vec::word2vec" but for dim, min_count and split

latent_dim

dimension of latent vector (default: 2)

intermediate_encoder_layers

list of intermediate layers for encoder, without input layer

intermediate_decoder_layers

list of intermediate layers for decoder, without output layer

regularization

regularization parameter, which is nonnegative (default: 1)

prot_seq_val

amino acid sequence for validation (default: NULL)

label_val

label for validation (default: NULL)

epochs

number of epochs

batch_size

batch size

preprocessing

list of preprocessed results, they are set to NULL as default x_train, length_seq, embedding_dim and embedding_matrix must be required for training

  • x_train : embedded sequence data for train

  • x_val : embedded sequence data for validation

  • y_train : labels for train

  • y_val : labels for validation

  • lenc : encoded labels

  • length_seq : length of sequence

  • embedding_dim : dimension of the dense embedding

  • embedding_matrix : embedding matrix

  • removed_prot_seq : index for removed protein sequences while checking

  • removed_prot_seq_val : index for removed protein sequences of validation

use_generator

use data generator if TRUE (default: FALSE)

optimizer

name of optimizer (default: adam)

validation_split

proportion of validation data, it is ignored when there is a validation set (default: 0)

...

additional parameters for the "fit"

x

result of the function "fit_VAE"

num_seq

number of sequences to be generated

remove_gap

remove gaps from sequences (default: TRUE)

Value

model

trained VAE model

encoder

trained encoder model

decoder

trained decoder model

preprocessing

preprocessed results

gen_seq

generated sequence data

label

labels for generated sequence data

latent_vector

latent vector from embedded sequence data

Author(s)

Dongmin Jung

References

Cinelli, L. P., Marins, M. A., da Silva, E. A. B., & Netto, S. L. (2021). Variational Methods for Machine Learning with Applications to Deep Networks. Springer.

Liebowitz, J. (Ed.). (2020). Data Analytics and AI. CRC Press.

See Also

keras::fit, keras::compile, reticulate::array_reshape, mclust::mclustBIC, mclust::mclustModel, mclust::sim, DeepPINCS::multiple_sampling_generator, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform

Examples

if (keras::is_keras_available() & reticulate::py_available()) {
    data("example_luxA")
    label <- substr(example_luxA, 3, 3)
    
    # model parameters
    length_seq <- 360
    embedding_dim <- 8
    batch_size <- 128
    epochs <- 2
    
    # CVAE
    VAE_result <- fit_VAE(prot_seq = example_luxA,
                        label = label,
                        length_seq = length_seq,
                        embedding_dim = embedding_dim,
                        embedding_args = list(iter = 20),
                        intermediate_encoder_layers = list(layer_dense(units = 128),
                                                            layer_dense(units = 16)),
                        intermediate_decoder_layers = list(layer_dense(units = 16),
                                                            layer_dense(units = 128)),
                        prot_seq_val = example_luxA,
                        label_val = label,
                        epochs = epochs,
                        batch_size = batch_size,
                        use_generator = FALSE,
                        optimizer = keras::optimizer_adam(clipnorm = 0.1),
                        callbacks = keras::callback_early_stopping(
                            monitor = "val_loss",
                            patience = 10,
                            restore_best_weights = TRUE))
    gen_prot_VAE_I <- gen_VAE(VAE_result, label = rep("I", 100), num_seq = 100)
    gen_prot_VAE_L <- gen_VAE(VAE_result, label = rep("L", 100), num_seq = 100)
    
    
    ### from preprocessing
    VAE_result2 <- fit_VAE(intermediate_encoder_layers = list(layer_dense(units = 128),
                                                            layer_dense(units = 16)),
                            intermediate_decoder_layers = list(layer_dense(units = 16),
                                                            layer_dense(units = 128)),
                            epochs = epochs, batch_size = batch_size,
                            preprocessing = VAE_result$preprocessing,
                            use_generator = FALSE,
                            optimizer = keras::optimizer_adam(clipnorm = 0.1),
                            callbacks = keras::callback_early_stopping(
                                monitor = "val_loss",
                                patience = 10,
                                restore_best_weights = TRUE))
    gen_prot_VAE2_I <- gen_VAE(VAE_result2, label = rep("I", 100), num_seq = 100)
    gen_prot_VAE2_L <- gen_VAE(VAE_result2, label = rep("L", 100), num_seq = 100)
}