Title: | Generating Protein Sequences with Deep Generative Models |
---|---|
Description: | Generative modeling for protein engineering is key to solving fundamental problems in synthetic biology, medicine, and material science. Machine learning has enabled us to generate useful protein sequences on a variety of scales. Generative models are machine learning methods which seek to model the distribution underlying the data, allowing for the generation of novel samples with similar properties to those on which the model was trained. Generative models of proteins can learn biologically meaningful representations helpful for a variety of downstream tasks. Furthermore, they can learn to generate protein sequences that have not been observed before and to assign higher probability to protein sequences that satisfy desired criteria. In this package, common deep generative models for protein sequences, such as variational autoencoder (VAE), generative adversarial networks (GAN), and autoregressive models are available. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is applied to protein sequences for the autoregressive model. |
Authors: | Dongmin Jung [cre, aut] |
Maintainer: | Dongmin Jung <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.11.0 |
Built: | 2024-11-29 05:57:51 UTC |
Source: | https://github.com/bioc/GenProSeq |
The autoregressive generative model predicts the next amino acid in a protein given the amino acid sequence up to that point. The autoregressive model generates proteins one amino acid at a time. For one step of generation, it takes a context sequence of amino acids as input and outputs a probability distribution over amino acids. We sample from that distribution and then update the context sequence with the sampled amino acid. The Transformer is used as an encoder model. The AR with the Transformer model can be trained by the function "fit_ART", and then the function "gen_ART" generates protein sequences.
fit_ART(prot_seq, length_seq, embedding_dim, num_heads, ff_dim, num_transformer_blocks, layers = NULL, prot_seq_val = NULL, epochs, batch_size, preprocessing = list( x_train = NULL, x_val = NULL, y_train = NULL, y_val = NULL, lenc = NULL, length_seq = NULL, num_AA = NULL, embedding_dim = NULL, removed_prot_seq = NULL, removed_prot_seq_val = NULL), use_generator = FALSE, optimizer = "adam", metrics = "accuracy", validation_split = 0, ...) gen_ART(x, seed_prot, length_AA, method = NULL, b = NULL, t = 1, k = NULL, p = NULL)
fit_ART(prot_seq, length_seq, embedding_dim, num_heads, ff_dim, num_transformer_blocks, layers = NULL, prot_seq_val = NULL, epochs, batch_size, preprocessing = list( x_train = NULL, x_val = NULL, y_train = NULL, y_val = NULL, lenc = NULL, length_seq = NULL, num_AA = NULL, embedding_dim = NULL, removed_prot_seq = NULL, removed_prot_seq_val = NULL), use_generator = FALSE, optimizer = "adam", metrics = "accuracy", validation_split = 0, ...) gen_ART(x, seed_prot, length_AA, method = NULL, b = NULL, t = 1, k = NULL, p = NULL)
prot_seq |
amino acid sequence |
length_seq |
length of sequence used as input |
embedding_dim |
dimension of the dense embedding |
num_heads |
number of attention heads |
ff_dim |
hidden layer size in feedforward network inside transformer |
num_transformer_blocks |
number of transformer blocks |
layers |
list of layers between the transformer encoder and the output layer (default: NULL) |
prot_seq_val |
amino acid sequence for validation (default: NULL) |
epochs |
number of epochs |
batch_size |
batch size |
preprocessing |
list of preprocessed results, they are set to NULL as default x_train, y_train, lenc, length_seq, num_AA, and embedding_dim must be required for training
|
use_generator |
use data generator if TRUE (default: FALSE) |
optimizer |
name of optimizer (default: adam) |
metrics |
name of metrics (default: accuracy) |
validation_split |
proportion of validation data, it is ignored when there is a validation set (default: 0) |
... |
additional parameters for the "fit" |
x |
result of the function "fit_ART" |
seed_prot |
sequence to be used as a seed protein |
length_AA |
length of amino acids to be generated |
method |
"greedy", "beam", "temperature", "top_k", or "top_p" |
b |
beam size in the beam search |
t |
temperature in the temperature sampling (default: 1) |
k |
number of amino acids in the top-k sampling |
p |
minimum probabilty for the set of amino acids in the top-p sampling |
model |
trained ART model |
preprocessing |
preprocessed results |
Dongmin Jung
Deepak, P., Chakraborty, T., & Long, C. (2021). Data Science for Fake News: Surveys and Perspectives (Vol. 42). Springer.
Liu, Z., Lin, Y., & Sun, M. (2020). Representation learning for natural language processing. Springer.
Madani, A., McCann, B., Naik, N., Keskar, N. S., Anand, N., Eguchi, R. R., Huang, P., & Socher, R. (2020). Progen: Language modeling for protein generation. arXiv:2004.03497.
keras::fit, keras::compile, ttgsea::sampling_generator, DeepPINCS::multiple_sampling_generator, DeepPINCS::seq_preprocessing, DeepPINCS::get_seq_encode_pad, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform
if (keras::is_keras_available() & reticulate::py_available()) { prot_seq <- DeepPINCS::SARS_CoV2_3CL_Protease # model parameters length_seq <- 10 embedding_dim <- 16 num_heads <- 2 ff_dim <- 16 num_transformer_blocks <- 2 batch_size <- 32 epochs <- 2 # ART ART_result <- fit_ART(prot_seq = prot_seq, length_seq = length_seq, embedding_dim = embedding_dim, num_heads = num_heads, ff_dim = ff_dim, num_transformer_blocks = num_transformer_blocks, layers = list(layer_dropout(rate = 0.1), layer_dense(units = 32, activation = "relu"), layer_dropout(rate = 0.1)), prot_seq_val = prot_seq, epochs = epochs, batch_size = batch_size, use_generator = TRUE, callbacks = callback_early_stopping( monitor = "val_loss", patience = 10, restore_best_weights = TRUE)) seed_prot <- "SGFRKMAFPS" gen_ART(ART_result, seed_prot, length_AA = 20, method = "greedy") gen_ART(ART_result, seed_prot, length_AA = 20, method = "beam", b = 5) gen_ART(ART_result, seed_prot, length_AA = 20, method = "temperature", t = 0.1) gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_k", k = 3) gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_p", p = 0.75) ### from preprocessing ART_result2 <- fit_ART(num_heads = 4, ff_dim = 32, num_transformer_blocks = 3, layers = list(layer_dropout(rate=0.1), layer_dense(units=32, activation="relu"), layer_dropout(rate=0.1)), epochs = epochs, batch_size = batch_size, preprocessing = ART_result$preprocessing, use_generator = TRUE, callbacks = callback_early_stopping( monitor = "val_loss", patience = 50, restore_best_weights = TRUE)) gen_ART(ART_result2, seed_prot, length_AA = 20, method = "greedy") gen_ART(ART_result2, seed_prot, length_AA = 20, method = "beam", b = 5) gen_ART(ART_result2, seed_prot, length_AA = 20, method = "temperature", t = 0.1) gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_k", k = 3) gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_p", p = 0.75) }
if (keras::is_keras_available() & reticulate::py_available()) { prot_seq <- DeepPINCS::SARS_CoV2_3CL_Protease # model parameters length_seq <- 10 embedding_dim <- 16 num_heads <- 2 ff_dim <- 16 num_transformer_blocks <- 2 batch_size <- 32 epochs <- 2 # ART ART_result <- fit_ART(prot_seq = prot_seq, length_seq = length_seq, embedding_dim = embedding_dim, num_heads = num_heads, ff_dim = ff_dim, num_transformer_blocks = num_transformer_blocks, layers = list(layer_dropout(rate = 0.1), layer_dense(units = 32, activation = "relu"), layer_dropout(rate = 0.1)), prot_seq_val = prot_seq, epochs = epochs, batch_size = batch_size, use_generator = TRUE, callbacks = callback_early_stopping( monitor = "val_loss", patience = 10, restore_best_weights = TRUE)) seed_prot <- "SGFRKMAFPS" gen_ART(ART_result, seed_prot, length_AA = 20, method = "greedy") gen_ART(ART_result, seed_prot, length_AA = 20, method = "beam", b = 5) gen_ART(ART_result, seed_prot, length_AA = 20, method = "temperature", t = 0.1) gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_k", k = 3) gen_ART(ART_result, seed_prot, length_AA = 20, method = "top_p", p = 0.75) ### from preprocessing ART_result2 <- fit_ART(num_heads = 4, ff_dim = 32, num_transformer_blocks = 3, layers = list(layer_dropout(rate=0.1), layer_dense(units=32, activation="relu"), layer_dropout(rate=0.1)), epochs = epochs, batch_size = batch_size, preprocessing = ART_result$preprocessing, use_generator = TRUE, callbacks = callback_early_stopping( monitor = "val_loss", patience = 50, restore_best_weights = TRUE)) gen_ART(ART_result2, seed_prot, length_AA = 20, method = "greedy") gen_ART(ART_result2, seed_prot, length_AA = 20, method = "beam", b = 5) gen_ART(ART_result2, seed_prot, length_AA = 20, method = "temperature", t = 0.1) gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_k", k = 3) gen_ART(ART_result2, seed_prot, length_AA = 20, method = "top_p", p = 0.75) }
The data consist of selected amino acid sequences of the luxA. There are 2283 aligned sequences of length 360.
example_luxA
example_luxA
aligned amino acid sequences
Dongmin Jung
Hawkins-Hooker, A., Depardieu, F., Baur, S., Couairon, G., Chen, A., & Bikard, D. (2020). Generating functional protein variants with variational autoencoders. bioRxiv.
The data consist of selected amino acid sequences of the PTEN. There are 912 aligned sequences of length 403.
example_PTEN
example_PTEN
aligned amino acid sequences
Dongmin Jung
Frazer, J., Notin, P., Dias, M., Gomez, A., Brock, K., Gal, Y., & Marks, D. (2020). Large-scale clinical interpretation of genetic variants using evolutionary data and deep learning. bioRxiv.
The generative adversarial network (GAN) is made up of a discriminator and a generator that compete in a two-player minimax game. The objective of the generator is to produce an output that is so close to real that it confuses the discriminator in being able to differentiate the fake data from the real data. The conditional GAN (CGAN) is based on vanilla GAN with additional conditional input to generator and discriminator. The auxiliary classifier GAN (ACGAN) is an extension of CGAN that adds conditional input only to the generator. The Word2vec is applied to amino acids for embedding. The GAN or ACGAN model can be trained by the function "fit_GAN", and then the function "gen_GAN" generates protein sequences from the trained model.
fit_GAN(prot_seq, label = NULL, length_seq, embedding_dim, embedding_args = list(), latent_dim = NULL, intermediate_generator_layers, intermediate_discriminator_layers, prot_seq_val = NULL, label_val = NULL, epochs, batch_size, preprocessing = list( x_train = NULL, x_val = NULL, y_train = NULL, y_val = NULL, lenc = NULL, length_seq = NULL, num_seq = NULL, embedding_dim = NULL, embedding_matrix = NULL, removed_prot_seq = NULL, removed_prot_seq_val = NULL, latent_dim = NULL), optimizer = "adam", validation_split = 0) gen_GAN(x, label = NULL, num_seq, remove_gap = TRUE)
fit_GAN(prot_seq, label = NULL, length_seq, embedding_dim, embedding_args = list(), latent_dim = NULL, intermediate_generator_layers, intermediate_discriminator_layers, prot_seq_val = NULL, label_val = NULL, epochs, batch_size, preprocessing = list( x_train = NULL, x_val = NULL, y_train = NULL, y_val = NULL, lenc = NULL, length_seq = NULL, num_seq = NULL, embedding_dim = NULL, embedding_matrix = NULL, removed_prot_seq = NULL, removed_prot_seq_val = NULL, latent_dim = NULL), optimizer = "adam", validation_split = 0) gen_GAN(x, label = NULL, num_seq, remove_gap = TRUE)
prot_seq |
aligned amino acid sequence |
label |
label (default: NULL) |
length_seq |
length of sequence |
embedding_dim |
dimension of the dense embedding |
embedding_args |
list of arguments for "word2vec::word2vec" but for dim, min_count and split |
latent_dim |
dimension of latent vector (default: NULL) |
intermediate_generator_layers |
list of intermediate layers for generator, without input layer |
intermediate_discriminator_layers |
list of intermediate layers for discriminator, without output layer |
prot_seq_val |
amino acid sequence for validation (default: NULL) |
label_val |
label for validation (default: NULL) |
epochs |
number of epochs |
batch_size |
batch size |
preprocessing |
list of preprocessed results, they are set to NULL as default x_train, length_seq, num_seq, embedding_dim and embedding_matrix must be required for training
|
optimizer |
name of optimizer (default: adam) |
validation_split |
proportion of validation data, it is ignored when there is a validation set (default: 0) |
x |
result of the function "fit_GAN" |
num_seq |
number of sequences to be generated |
remove_gap |
remove gaps from sequences (default: TRUE) |
model |
trained GAN model |
generator |
trained generator model |
discriminator |
trained discriminator model |
preprocessing |
preprocessed results |
gen_seq |
generated sequence data |
label |
labels for generated sequence data |
Dongmin Jung
Liebowitz, J. (Ed.). (2020). Data Analytics and AI. CRC Press.
Pedrycz, W., & Chen, S. M. (Eds.). (2020). Deep Learning: Concepts and Architectures. Springer.
Suguna, S. K., Dhivya, M., & Paiva, S. (Eds.). (2021). Artificial Intelligence (AI): Recent Trends and Applications. CRC Press.
Sun, S., Mao, L., Dong, Z., & Wu, L. (2019). Multiview machine learning. Springer.
keras::train_on_batch, keras::evaluate, keras::compile, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform
if (keras::is_keras_available() & reticulate::py_available()) { data("example_PTEN") # model parameters length_seq <- 403 embedding_dim <- 8 latent_dim <- 4 epochs <- 2 batch_size <- 64 # GAN GAN_result <- fit_GAN(prot_seq = example_PTEN, length_seq = length_seq, embedding_dim = embedding_dim, latent_dim = latent_dim, intermediate_generator_layers = list( layer_dense(units = 16), layer_dense(units = 128)), intermediate_discriminator_layers = list( layer_dense(units = 128, activation = "relu"), layer_dense(units = 16, activation = "relu")), prot_seq_val = example_PTEN, epochs = epochs, batch_size = batch_size) set.seed(1) gen_prot_GAN <- gen_GAN(GAN_result, num_seq = 100) ### from preprocessing GAN_result2 <- fit_GAN(preprocessing = GAN_result$preprocessing, intermediate_generator_layers = list( layer_dense(units = 16), layer_dense(units = 128)), intermediate_discriminator_layers = list( layer_dense(units = 128, activation = "relu"), layer_dense(units = 16, activation = "relu")), epochs = epochs, batch_size = batch_size) gen_prot_GAN <- gen_GAN(GAN_result2, num_seq = 100) }
if (keras::is_keras_available() & reticulate::py_available()) { data("example_PTEN") # model parameters length_seq <- 403 embedding_dim <- 8 latent_dim <- 4 epochs <- 2 batch_size <- 64 # GAN GAN_result <- fit_GAN(prot_seq = example_PTEN, length_seq = length_seq, embedding_dim = embedding_dim, latent_dim = latent_dim, intermediate_generator_layers = list( layer_dense(units = 16), layer_dense(units = 128)), intermediate_discriminator_layers = list( layer_dense(units = 128, activation = "relu"), layer_dense(units = 16, activation = "relu")), prot_seq_val = example_PTEN, epochs = epochs, batch_size = batch_size) set.seed(1) gen_prot_GAN <- gen_GAN(GAN_result, num_seq = 100) ### from preprocessing GAN_result2 <- fit_GAN(preprocessing = GAN_result$preprocessing, intermediate_generator_layers = list( layer_dense(units = 16), layer_dense(units = 128)), intermediate_discriminator_layers = list( layer_dense(units = 128, activation = "relu"), layer_dense(units = 16, activation = "relu")), epochs = epochs, batch_size = batch_size) gen_prot_GAN <- gen_GAN(GAN_result2, num_seq = 100) }
The protein sequence dataset is filtered by eliminating sequences containing the non-amino acid characters (digits and blank spaces) from the amino acid sequences. A valid amino acid sequence means a string that only contains capital letters of an alphabet and a hyphen for a gap.
prot_seq_check(prot_seq, label = NULL)
prot_seq_check(prot_seq, label = NULL)
prot_seq |
amino acid sequences |
label |
label (default: NULL) |
valid sequences
Dongmin Jung
Mukhopadhyay, C. S., Choudhary, R. K., & Iquebal, M. A. (2017). Basic Applied Bioinformatics. John Wiley & Sons.
data("example_PTEN") prot_seq_check(example_PTEN[1])
data("example_PTEN") prot_seq_check(example_PTEN[1])
By using the word2vec model, amino acids are mapped to vectors of real numbers. Conceptually, it involves a mathematical embedding from a space with many dimensions per amino acid to a continuous vector space with a much lower dimension.
prot2vec(prot_seq, embedding_dim, embedding_matrix = NULL, ...) vec2prot(prot_vec, embedding_matrix)
prot2vec(prot_seq, embedding_dim, embedding_matrix = NULL, ...) vec2prot(prot_vec, embedding_matrix)
prot_seq |
protein sequences |
prot_vec |
protein embedding vectors |
embedding_dim |
dimension of embedding vectors |
embedding_matrix |
embedding matrix (default: NULL) |
... |
arguments for "word2vec::word2vec" but for dim, min_count and split |
prot_seq |
protein sequences |
prot_vec |
protein embedding vectors |
embedding_matrix |
embedding matrix |
Dongmin Jung
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. arXiv:1310.4546.
Chang, M. (2020). Artificial intelligence for drug development, precision medicine, and healthcare.
word2vec::word2vec, word2vec::word2vec_similarity
data("example_PTEN") prot_seq <- example_PTEN[1:10] prot2vec_result <- prot2vec(prot_seq = prot_seq, embedding_dim = 8) vec2prot_result <- vec2prot(prot_vec = prot2vec_result$prot_vec, embedding_matrix = prot2vec_result$embedding_matrix)
data("example_PTEN") prot_seq <- example_PTEN[1:10] prot2vec_result <- prot2vec(prot_seq = prot_seq, embedding_dim = 8) vec2prot_result <- vec2prot(prot_vec = prot2vec_result$prot_vec, embedding_matrix = prot2vec_result$embedding_matrix)
The Transformer architecture is a nonrecurrent architecture with a series of attention-based blocks. Each block is composed of a multi-head attention layer and a position-wise feedforward layer with an add and normalize layer in between. These layers process input sequences simultaneously, in parallel, independently of sequential order.
layer_embedding_token_position(x, maxlen, vocab_size, embed_dim) layer_transformer_encoder(x, embed_dim, num_heads, ff_dim, num_transformer_blocks)
layer_embedding_token_position(x, maxlen, vocab_size, embed_dim) layer_transformer_encoder(x, embed_dim, num_heads, ff_dim, num_transformer_blocks)
x |
layer object |
maxlen |
maximum of sequence size |
vocab_size |
vacabulary size |
embed_dim |
embedding size for each token |
num_heads |
number of attention heads |
ff_dim |
hidden layer size in feedforward network inside transformer |
num_transformer_blocks |
number of transformer blocks |
layer object
Dongmin Jung
Lappin, S. (2021). Deep learning and linguistic representation. CRC Press.
Liu, Z., Lin, Y., & Sun, M. (2020). Representation learning for natural language processing. Springer.
if (keras::is_keras_available() & reticulate::py_available()) { num_AA <- 20 length_seq <- 10 embedding_dim <- 16 num_heads <- 2 ff_dim <- 16 num_transformer_blocks <- 2 inputs <- layer_input(shape = length_seq) x <- inputs %>% layer_embedding_token_position(maxlen = length_seq, vocab_size = num_AA, embed_dim = embedding_dim) %>% layer_transformer_encoder(embed_dim = embedding_dim, num_heads = num_heads, ff_dim = ff_dim, num_transformer_blocks = num_transformer_blocks) %>% layer_global_average_pooling_1d() }
if (keras::is_keras_available() & reticulate::py_available()) { num_AA <- 20 length_seq <- 10 embedding_dim <- 16 num_heads <- 2 ff_dim <- 16 num_transformer_blocks <- 2 inputs <- layer_input(shape = length_seq) x <- inputs %>% layer_embedding_token_position(maxlen = length_seq, vocab_size = num_AA, embed_dim = embedding_dim) %>% layer_transformer_encoder(embed_dim = embedding_dim, num_heads = num_heads, ff_dim = ff_dim, num_transformer_blocks = num_transformer_blocks) %>% layer_global_average_pooling_1d() }
The variational autoencoder (VAE) is a class of autoencoder where the encoder module is used to learn the parameter of a distribution and the decoder is used to generate examples from samples drawn from the learned distribution. The conditional variational autoencoder (CVAE) is designed to generate desired samples by including additional conditioning information. Since there may be underlying distinctions between groups of samples, the Gaussian mixture model is used for sequence generation. The Word2vec is applied to amino acids for embedding. The VAE or CVAE model can be trained by the function "fit_VAE", and then the function "gen_VAE" generates protein sequences from the trained model.
fit_VAE(prot_seq, label = NULL, length_seq, embedding_dim, embedding_args = list(), latent_dim = 2, intermediate_encoder_layers, intermediate_decoder_layers, prot_seq_val = NULL, label_val = NULL, regularization = 1, epochs, batch_size, preprocessing = list( x_train = NULL, x_val = NULL, y_train = NULL, y_val = NULL, lenc = NULL, length_seq = NULL, embedding_dim = NULL, embedding_matrix = NULL, removed_prot_seq = NULL, removed_prot_seq_val = NULL), use_generator = FALSE, optimizer = "adam", validation_split = 0, ...) gen_VAE(x, label = NULL, num_seq, remove_gap = TRUE, batch_size, use_generator = FALSE)
fit_VAE(prot_seq, label = NULL, length_seq, embedding_dim, embedding_args = list(), latent_dim = 2, intermediate_encoder_layers, intermediate_decoder_layers, prot_seq_val = NULL, label_val = NULL, regularization = 1, epochs, batch_size, preprocessing = list( x_train = NULL, x_val = NULL, y_train = NULL, y_val = NULL, lenc = NULL, length_seq = NULL, embedding_dim = NULL, embedding_matrix = NULL, removed_prot_seq = NULL, removed_prot_seq_val = NULL), use_generator = FALSE, optimizer = "adam", validation_split = 0, ...) gen_VAE(x, label = NULL, num_seq, remove_gap = TRUE, batch_size, use_generator = FALSE)
prot_seq |
aligned amino acid sequence |
label |
label (default: NULL) |
length_seq |
length of sequence |
embedding_dim |
dimension of the dense embedding |
embedding_args |
list of arguments for "word2vec::word2vec" but for dim, min_count and split |
latent_dim |
dimension of latent vector (default: 2) |
intermediate_encoder_layers |
list of intermediate layers for encoder, without input layer |
intermediate_decoder_layers |
list of intermediate layers for decoder, without output layer |
regularization |
regularization parameter, which is nonnegative (default: 1) |
prot_seq_val |
amino acid sequence for validation (default: NULL) |
label_val |
label for validation (default: NULL) |
epochs |
number of epochs |
batch_size |
batch size |
preprocessing |
list of preprocessed results, they are set to NULL as default x_train, length_seq, embedding_dim and embedding_matrix must be required for training
|
use_generator |
use data generator if TRUE (default: FALSE) |
optimizer |
name of optimizer (default: adam) |
validation_split |
proportion of validation data, it is ignored when there is a validation set (default: 0) |
... |
additional parameters for the "fit" |
x |
result of the function "fit_VAE" |
num_seq |
number of sequences to be generated |
remove_gap |
remove gaps from sequences (default: TRUE) |
model |
trained VAE model |
encoder |
trained encoder model |
decoder |
trained decoder model |
preprocessing |
preprocessed results |
gen_seq |
generated sequence data |
label |
labels for generated sequence data |
latent_vector |
latent vector from embedded sequence data |
Dongmin Jung
Cinelli, L. P., Marins, M. A., da Silva, E. A. B., & Netto, S. L. (2021). Variational Methods for Machine Learning with Applications to Deep Networks. Springer.
Liebowitz, J. (Ed.). (2020). Data Analytics and AI. CRC Press.
keras::fit, keras::compile, reticulate::array_reshape, mclust::mclustBIC, mclust::mclustModel, mclust::sim, DeepPINCS::multiple_sampling_generator, CatEncoders::LabelEncoder.fit, CatEncoders::transform, CatEncoders::inverse.transform
if (keras::is_keras_available() & reticulate::py_available()) { data("example_luxA") label <- substr(example_luxA, 3, 3) # model parameters length_seq <- 360 embedding_dim <- 8 batch_size <- 128 epochs <- 2 # CVAE VAE_result <- fit_VAE(prot_seq = example_luxA, label = label, length_seq = length_seq, embedding_dim = embedding_dim, embedding_args = list(iter = 20), intermediate_encoder_layers = list(layer_dense(units = 128), layer_dense(units = 16)), intermediate_decoder_layers = list(layer_dense(units = 16), layer_dense(units = 128)), prot_seq_val = example_luxA, label_val = label, epochs = epochs, batch_size = batch_size, use_generator = FALSE, optimizer = keras::optimizer_adam(clipnorm = 0.1), callbacks = keras::callback_early_stopping( monitor = "val_loss", patience = 10, restore_best_weights = TRUE)) gen_prot_VAE_I <- gen_VAE(VAE_result, label = rep("I", 100), num_seq = 100) gen_prot_VAE_L <- gen_VAE(VAE_result, label = rep("L", 100), num_seq = 100) ### from preprocessing VAE_result2 <- fit_VAE(intermediate_encoder_layers = list(layer_dense(units = 128), layer_dense(units = 16)), intermediate_decoder_layers = list(layer_dense(units = 16), layer_dense(units = 128)), epochs = epochs, batch_size = batch_size, preprocessing = VAE_result$preprocessing, use_generator = FALSE, optimizer = keras::optimizer_adam(clipnorm = 0.1), callbacks = keras::callback_early_stopping( monitor = "val_loss", patience = 10, restore_best_weights = TRUE)) gen_prot_VAE2_I <- gen_VAE(VAE_result2, label = rep("I", 100), num_seq = 100) gen_prot_VAE2_L <- gen_VAE(VAE_result2, label = rep("L", 100), num_seq = 100) }
if (keras::is_keras_available() & reticulate::py_available()) { data("example_luxA") label <- substr(example_luxA, 3, 3) # model parameters length_seq <- 360 embedding_dim <- 8 batch_size <- 128 epochs <- 2 # CVAE VAE_result <- fit_VAE(prot_seq = example_luxA, label = label, length_seq = length_seq, embedding_dim = embedding_dim, embedding_args = list(iter = 20), intermediate_encoder_layers = list(layer_dense(units = 128), layer_dense(units = 16)), intermediate_decoder_layers = list(layer_dense(units = 16), layer_dense(units = 128)), prot_seq_val = example_luxA, label_val = label, epochs = epochs, batch_size = batch_size, use_generator = FALSE, optimizer = keras::optimizer_adam(clipnorm = 0.1), callbacks = keras::callback_early_stopping( monitor = "val_loss", patience = 10, restore_best_weights = TRUE)) gen_prot_VAE_I <- gen_VAE(VAE_result, label = rep("I", 100), num_seq = 100) gen_prot_VAE_L <- gen_VAE(VAE_result, label = rep("L", 100), num_seq = 100) ### from preprocessing VAE_result2 <- fit_VAE(intermediate_encoder_layers = list(layer_dense(units = 128), layer_dense(units = 16)), intermediate_decoder_layers = list(layer_dense(units = 16), layer_dense(units = 128)), epochs = epochs, batch_size = batch_size, preprocessing = VAE_result$preprocessing, use_generator = FALSE, optimizer = keras::optimizer_adam(clipnorm = 0.1), callbacks = keras::callback_early_stopping( monitor = "val_loss", patience = 10, restore_best_weights = TRUE)) gen_prot_VAE2_I <- gen_VAE(VAE_result2, label = rep("I", 100), num_seq = 100) gen_prot_VAE2_L <- gen_VAE(VAE_result2, label = rep("L", 100), num_seq = 100) }