Package: ClustIRR 1.5.39

Simo Kitanovski

ClustIRR: Clustering of immune receptor repertoires

ClustIRR analyzes repertoires of B- and T-cell receptors. It starts by identifying communities of immune receptors with similar specificities, based on the sequences of their complementarity-determining regions (CDRs). Next, it employs a Bayesian probabilistic models to quantify differential community occupancy (DCO) between repertoires, allowing the identification of expanding or contracting communities in response to e.g. infection or cancer treatment.

Authors:Simo Kitanovski [aut, cre], Kai Wollek [aut]

ClustIRR_1.5.39.tar.gz
ClustIRR_1.5.39.zip(r-4.5)ClustIRR_1.5.39.zip(r-4.4)ClustIRR_1.5.39.zip(r-4.3)
ClustIRR_1.5.39.tgz(r-4.4-x86_64)ClustIRR_1.5.39.tgz(r-4.4-arm64)ClustIRR_1.5.39.tgz(r-4.3-x86_64)ClustIRR_1.5.39.tgz(r-4.3-arm64)
ClustIRR_1.5.39.tar.gz(r-4.5-noble)ClustIRR_1.5.39.tar.gz(r-4.4-noble)
ClustIRR.pdf |ClustIRR.html
ClustIRR/json (API)
NEWS

# Install 'ClustIRR' in R:
install.packages('ClustIRR', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/snaketron/clustirr/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • BLOSUM62 - BLOSUM62 matrix
  • CDR3ab - Mock data set of complementarity determining region 3 (CDR3) sequences and variable (V) and joining (J) genes from the alpha and beta chains of 10,000 T cell receptors.
  • mcpas - CDR3 sequences and their matching epitopes obtained from McPAS-TCR
  • tcr3d - CDR3 sequences and their matching epitopes obtained from TCR3d
  • vdjdb - CDR3 sequences and their matching epitopes obtained from VDJdb

On BioConductor:ClustIRR-1.5.24(bioc 3.21)ClustIRR-1.4.0(bioc 3.20)

clusteringimmunooncologysinglecellsoftwareclassificationb-cell-receptorbioinformaticsimmunoinformaticsimmunologyquantitative-methodsrep-seqrepertoire-analysist-cell-receptorcpp

5.95 score 2 stars 2 scripts 173 downloads 11 exports 98 dependencies

Last updated 10 days agofrom:bf0fdba123. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 24 2025
R-4.5-win-x86_64NOTEJan 24 2025
R-4.5-linux-x86_64NOTEJan 24 2025
R-4.4-win-x86_64NOTEJan 24 2025
R-4.4-mac-x86_64NOTEJan 24 2025
R-4.4-mac-aarch64NOTEJan 24 2025
R-4.3-win-x86_64NOTEJan 24 2025
R-4.3-mac-x86_64NOTEJan 24 2025
R-4.3-mac-aarch64NOTEJan 24 2025

Exports:cluster_irrdcodetect_communitiesget_ag_summaryget_beta_violinsget_clustirr_clustget_clustirr_inputsget_graphget_honeycombsget_joint_graphplot_graph

Dependencies:abindbackportsbase64encBHblasterbslibcachemcallrcheckmateclicodetoolscolorspacecpp11descdigestdistributionaldplyrevaluatefansifarverfastmapfontawesomefsfuturefuture.applygenericsggforceggplot2globalsgluegridExtragtablehighrhtmltoolshtmlwidgetsigraphinlineisobandjquerylibjsonliteknitrlabelinglatticelifecyclelistenvloomagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellnlmenumDerivparallellypillarpkgbuildpkgconfigplyrpolyclipposteriorprocessxpspurrrQuickJSRR6rappdirsRColorBrewerRcppRcppEigenRcppParallelreshape2rlangrmarkdownrstanrstantoolssassscalesStanHeadersstringdiststringistringrsystemfontstensorAtibbletidyrtidyselecttinytextweenrutf8vctrsviridisLitevisNetworkwithrxfunyaml

Analysis of T and B cell receptor repertoires with ClustIRR

Rendered fromUser_manual.Rmdusingknitr::rmarkdownon Jan 24 2025.

Last update: 2025-01-09
Started: 2023-05-22