Package: vsn 3.75.0

Wolfgang Huber

vsn: Variance stabilization and calibration for microarray data

The package implements a method for normalising microarray intensities from single- and multiple-color arrays. It can also be used for data from other technologies, as long as they have similar format. The method uses a robust variant of the maximum-likelihood estimator for an additive-multiplicative error model and affine calibration. The model incorporates data calibration step (a.k.a. normalization), a model for the dependence of the variance on the mean intensity and a variance stabilizing data transformation. Differences between transformed intensities are analogous to "normalized log-ratios". However, in contrast to the latter, their variance is independent of the mean, and they are usually more sensitive and specific in detecting differential transcription.

Authors:Wolfgang Huber, with contributions from Anja von Heydebreck. Many comments and suggestions by users are acknowledged, among them Dennis Kostka, David Kreil, Hans-Ulrich Klein, Robert Gentleman, Deepayan Sarkar and Gordon Smyth

vsn_3.75.0.tar.gz
vsn_3.75.0.zip(r-4.5)vsn_3.75.0.zip(r-4.4)vsn_3.75.0.zip(r-4.3)
vsn_3.75.0.tgz(r-4.4-x86_64)vsn_3.75.0.tgz(r-4.4-arm64)vsn_3.75.0.tgz(r-4.3-x86_64)vsn_3.75.0.tgz(r-4.3-arm64)
vsn_3.75.0.tar.gz(r-4.5-noble)vsn_3.75.0.tar.gz(r-4.4-noble)
vsn_3.75.0.tgz(r-4.4-emscripten)vsn_3.75.0.tgz(r-4.3-emscripten)
vsn.pdf |vsn.html
vsn/json (API)
NEWS

# Install 'vsn' in R:
install.packages('vsn', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • kidney - Intensity data for one cDNA slide with two adjacent tissue samples from a nephrectomy
  • lymphoma - Intensity data for 8 cDNA slides with CLL and DLBL samples from the Alizadeh et al. paper in Nature 2000

On BioConductor:vsn-3.75.0(bioc 3.21)vsn-3.74.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

microarrayonechanneltwochannelpreprocessing

8.51 score 50 packages 924 scripts 7.7k downloads 91 mentions 18 exports 38 dependencies

Last updated 3 months agofrom:79d34f6641. Checks:1 ERROR, 8 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesFAILDec 31 2024
R-4.5-win-x86_64WARNINGDec 31 2024
R-4.5-linux-x86_64WARNINGDec 31 2024
R-4.4-win-x86_64WARNINGDec 31 2024
R-4.4-mac-x86_64WARNINGDec 31 2024
R-4.4-mac-aarch64WARNINGDec 31 2024
R-4.3-win-x86_64WARNINGNov 30 2024
R-4.3-mac-x86_64WARNINGDec 31 2024
R-4.3-mac-aarch64WARNINGDec 31 2024

Exports:coefcoefficientscoerceexprsjustvsnlogLikmeanSdPlotncolnrowplotVsnLogLikpredictsagmbAssesssagmbSimulateDatascalingFactorTransformationshowvsn2vsnMatrixvsnrma

Dependencies:affyaffyioBiobaseBiocGenericsBiocManagerclicolorspacefansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclelimmamagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpreprocessCoreR6RColorBrewerrlangscalesstatmodtibbleutf8vctrsviridisLitewithrzlibbioc

Readme and manuals

Help Manual

Help pageTopics
vsnvsn-package
Wrapper functions for vsnjustvsn vsnrma
Intensity data for one cDNA slide with two adjacent tissue samples from a nephrectomy (kidney)kidney
Calculate the log likelihood and its gradient for the vsn modellogLik,vsnInput-method logLik-methods plotVsnLogLik
Intensity data for 8 cDNA slides with CLL and DLBL samples from the Alizadeh et al. paper in Nature 2000lymphoma
Plot row standard deviations versus row meansmeanSdPlot meanSdPlot,ExpressionSet-method meanSdPlot,MAList-method meanSdPlot,matrix-method meanSdPlot,vsn-method meanSdPlot-methods
Wrapper for vsn to be used as a normalization method with expressonormalize.AffyBatch.vsn
Simulate data and assess vsn's parameter estimationsagmbAssess sagmbSimulateData
The transformation that is applied to the scaling parameter of the vsn modelscalingFactorTransformation
Class to contain result of a vsn fitclass:vsn coef,vsn-method coefficients,vsn-method dim,vsn-method exprs,vsn-method ncol,vsn-method nrow,vsn-method show,vsn-method vsn-class [,vsn-method
Fit the vsn modelcoerce,RGList,NChannelSet-method vsn2 vsn2,AffyBatch-method vsn2,ExpressionSet-method vsn2,matrix-method vsn2,NChannelSet-method vsn2,numeric-method vsn2,RGList-method vsn2-methods vsnMatrix
Apply the vsn transformation to datapredict,vsn-method
Class to contain input data and parameters for vsn functionsclass:vsnInput dim,vsnInput-method ncol,vsnInput-method nrow,vsnInput-method show,vsnInput-method vsnInput vsnInput-class [,vsnInput-method