Package: vbmp 1.75.0

Nicola Lama

vbmp: Variational Bayesian Multinomial Probit Regression

Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors. It estimates class membership posterior probability employing variational and sparse approximation to the full posterior. This software also incorporates feature weighting by means of Automatic Relevance Determination.

Authors:Nicola Lama <[email protected]>, Mark Girolami <[email protected]>

vbmp_1.75.0.tar.gz
vbmp_1.75.0.zip(r-4.5)vbmp_1.75.0.zip(r-4.4)vbmp_1.75.0.zip(r-4.3)
vbmp_1.75.0.tgz(r-4.4-any)vbmp_1.75.0.tgz(r-4.3-any)
vbmp_1.75.0.tar.gz(r-4.5-noble)vbmp_1.75.0.tar.gz(r-4.4-noble)
vbmp_1.75.0.tgz(r-4.4-emscripten)vbmp_1.75.0.tgz(r-4.3-emscripten)
vbmp.pdf |vbmp.html
vbmp/json (API)

# Install 'vbmp' in R:
install.packages('vbmp', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:vbmp-1.75.0(bioc 3.21)vbmp-1.74.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

classification

3.30 score 3 scripts 280 downloads 7 exports 0 dependencies

Last updated 26 days agofrom:8c41b839d6. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winNOTEOct 31 2024
R-4.5-linuxNOTEOct 31 2024
R-4.4-winNOTEOct 31 2024
R-4.4-macNOTEOct 31 2024
R-4.3-winNOTEOct 31 2024
R-4.3-macNOTEOct 31 2024

Exports:covParamsplotDiagnosticspredClasspredErrorpredictCPPpredLikvbmp

Dependencies:

vbmp Tutorial

Rendered fromvbmp.Rnwusingutils::Sweaveon Oct 31 2024.

Last update: 2013-11-01
Started: 2013-11-01