Package: vbmp 1.75.0

Nicola Lama

vbmp: Variational Bayesian Multinomial Probit Regression

Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors. It estimates class membership posterior probability employing variational and sparse approximation to the full posterior. This software also incorporates feature weighting by means of Automatic Relevance Determination.

Authors:Nicola Lama <[email protected]>, Mark Girolami <[email protected]>

vbmp_1.75.0.tar.gz
vbmp_1.75.0.zip(r-4.5)vbmp_1.75.0.zip(r-4.4)vbmp_1.75.0.zip(r-4.3)
vbmp_1.75.0.tgz(r-4.4-any)vbmp_1.75.0.tgz(r-4.3-any)
vbmp_1.75.0.tar.gz(r-4.5-noble)vbmp_1.75.0.tar.gz(r-4.4-noble)
vbmp_1.75.0.tgz(r-4.4-emscripten)vbmp_1.75.0.tgz(r-4.3-emscripten)
vbmp.pdf |vbmp.html
vbmp/json (API)

# Install 'vbmp' in R:
install.packages('vbmp', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:vbmp-1.75.0(bioc 3.21)vbmp-1.74.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

classification

3.30 score 3 scripts 290 downloads 7 exports 0 dependencies

Last updated 2 months agofrom:8c41b839d6. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 30 2024
R-4.5-winNOTENov 30 2024
R-4.5-linuxNOTENov 30 2024
R-4.4-winNOTENov 30 2024
R-4.4-macNOTENov 30 2024
R-4.3-winNOTENov 30 2024
R-4.3-macNOTENov 30 2024

Exports:covParamsplotDiagnosticspredClasspredErrorpredictCPPpredLikvbmp

Dependencies:

vbmp Tutorial

Rendered fromvbmp.Rnwusingutils::Sweaveon Nov 30 2024.

Last update: 2013-11-01
Started: 2013-11-01