Package: vbmp 1.75.0

Nicola Lama

vbmp: Variational Bayesian Multinomial Probit Regression

Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors. It estimates class membership posterior probability employing variational and sparse approximation to the full posterior. This software also incorporates feature weighting by means of Automatic Relevance Determination.

Authors:Nicola Lama <[email protected]>, Mark Girolami <[email protected]>

vbmp_1.75.0.tar.gz
vbmp_1.75.0.zip(r-4.5)vbmp_1.75.0.zip(r-4.4)vbmp_1.75.0.zip(r-4.3)
vbmp_1.75.0.tgz(r-4.5-any)vbmp_1.75.0.tgz(r-4.4-any)vbmp_1.75.0.tgz(r-4.3-any)
vbmp_1.75.0.tar.gz(r-4.5-noble)vbmp_1.75.0.tar.gz(r-4.4-noble)
vbmp_1.75.0.tgz(r-4.4-emscripten)vbmp_1.75.0.tgz(r-4.3-emscripten)
vbmp.pdf |vbmp.html
vbmp/json (API)

# Install 'vbmp' in R:
install.packages('vbmp', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On BioConductor:vbmp-1.75.0(bioc 3.21)vbmp-1.74.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

classification

3.30 score 4 scripts 407 downloads 7 exports 0 dependencies

Last updated 5 months agofrom:8c41b839d6. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 30 2025
R-4.5-winNOTEMar 30 2025
R-4.5-macNOTEMar 30 2025
R-4.5-linuxNOTEMar 30 2025
R-4.4-winNOTEMar 30 2025
R-4.4-macNOTEMar 30 2025
R-4.4-linuxNOTEMar 30 2025
R-4.3-winNOTEMar 30 2025
R-4.3-macNOTEMar 30 2025

Exports:covParamsplotDiagnosticspredClasspredErrorpredictCPPpredLikvbmp

Dependencies:

vbmp Tutorial

Rendered fromvbmp.Rnwusingutils::Sweaveon Mar 30 2025.

Last update: 2013-11-01
Started: 2013-11-01