Package: tigre 1.61.0

Antti Honkela

tigre: Transcription factor Inference through Gaussian process Reconstruction of Expression

The tigre package implements our methodology of Gaussian process differential equation models for analysis of gene expression time series from single input motif networks. The package can be used for inferring unobserved transcription factor (TF) protein concentrations from expression measurements of known target genes, or for ranking candidate targets of a TF.

Authors:Antti Honkela, Pei Gao, Jonatan Ropponen, Miika-Petteri Matikainen, Magnus Rattray, Neil D. Lawrence

tigre_1.61.0.tar.gz
tigre_1.61.0.zip(r-4.5)tigre_1.61.0.zip(r-4.4)tigre_1.61.0.zip(r-4.3)
tigre_1.61.0.tgz(r-4.4-x86_64)tigre_1.61.0.tgz(r-4.4-arm64)tigre_1.61.0.tgz(r-4.3-x86_64)tigre_1.61.0.tgz(r-4.3-arm64)
tigre_1.61.0.tar.gz(r-4.5-noble)tigre_1.61.0.tar.gz(r-4.4-noble)
tigre_1.61.0.tgz(r-4.4-emscripten)tigre_1.61.0.tgz(r-4.3-emscripten)
tigre.pdf |tigre.html
tigre/json (API)
NEWS

# Install 'tigre' in R:
install.packages('tigre', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ahonkela/tigre/issues

Datasets:

On BioConductor:tigre-1.61.0(bioc 3.21)tigre-1.60.0(bioc 3.20)

microarraytimecoursegeneexpressiontranscriptiongeneregulationnetworkinferencebayesian

4.38 score 6 scripts 311 downloads 2 mentions 183 exports 46 dependencies

Last updated 3 months agofrom:34c6d0db63. Checks:7 OK, 2 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 26 2024
R-4.5-win-x86_64NOTEDec 31 2024
R-4.5-linux-x86_64NOTEDec 26 2024
R-4.4-win-x86_64OKDec 31 2024
R-4.4-mac-x86_64OKDec 26 2024
R-4.4-mac-aarch64OKDec 26 2024
R-4.3-win-x86_64OKDec 31 2024
R-4.3-mac-x86_64OKDec 26 2024
R-4.3-mac-aarch64OKDec 26 2024

Exports:baseloglikelihoodsbaseloglikelihoods<-boundedTransformCGoptimcgpdisimExpandParamcgpdisimExtractParamcgpdisimGradientcgpdisimLogLikeGradientscgpdisimLogLikelihoodcgpdisimObjectivecgpdisimUpdateProcessescgpsimExpandParamcgpsimExtractParamcgpsimGradientcgpsimLogLikeGradientscgpsimLogLikelihoodcgpsimObjectivecgpsimOptimisecgpsimUpdateProcessescmpndKernComputecmpndKernDiagComputecmpndKernDiagGradXcmpndKernDisplaycmpndKernExpandParamcmpndKernExtractParamcmpndKernGradientcmpndKernGradXcmpndKernParamInitdatasetNamedatasetName<-disimKernComputedisimKernDiagComputedisimKernDisplaydisimKernExpandParamdisimKernExtractParamdisimKernGradientdisimKernParamInitdisimXdisimKernComputedisimXdisimKernGradientdisimXrbfKernComputedisimXrbfKernGradientdisimXsimKernComputedisimXsimKernGradientexperimentSetexperimentSet<-export.scoresexpTransformgammaPriorExpandParamgammaPriorExtractParamgammaPriorGradientgammaPriorLogProbgammaPriorParamInitgenerateModelsgenesgenes<-gpdisimCreategpdisimDisplaygpdisimExpandParamgpdisimExtractParamgpdisimGradientgpdisimLogLikeGradientsgpdisimLogLikelihoodgpdisimObjectivegpdisimUpdateProcessesGPLearnGPPlotGPRankTargetsGPRankTFsgpsimCreategpsimDisplaygpsimExpandParamgpsimExtractParamgpsimGradientgpsimLogLikeGradientsgpsimLogLikelihoodgpsimObjectivegpsimUpdateProcessesinvgammaPriorExpandParaminvgammaPriorExtractParaminvgammaPriorGradientinvgammaPriorLogProbinvgammaPriorParamInitis.GPModelkernComputekernCreatekernDiagComputekernDiagGradXkernDisplaykernExpandParamkernExtractParamkernGradientkernGradXkernParamInitkernPriorGradientkernPriorLogProbknownTargetsknownTargets<-lnDiffErfsloglikelihoodsloglikelihoods<-mlpKernComputemlpKernDiagGradXmlpKernExpandParammlpKernExtractParammlpKernGradientmlpKernGradXmlpKernParamInitmodelArgsmodelArgs<-modelDisplaymodelExpandParammodelExtractParammodelGradientmodelLogLikelihoodmodelObjectivemodelOptimisemodelStructmodelStruct<-modelTieParammodelTypemodelUpdateProcessesmultiKernComputemultiKernDiagComputemultiKernDisplaymultiKernExpandParammultiKernExtractParammultiKernGradientmultiKernParamInitoptimiDefaultConstraintoptimiDefaultOptionsparamsparams<-plotTimeseriespriorCreatepriorExpandParampriorExtractParampriorGradientpriorLogProbpriorParamInitprocessDataprocessRawDatarbfKernComputerbfKernDiagComputerbfKernDisplayrbfKernExpandParamrbfKernExtractParamrbfKernGradientrbfKernParamInitSCGoptimsharedModelsharedModel<-sigmoidTransformsimKernComputesimKernDiagComputesimKernDisplaysimKernExpandParamsimKernExtractParamsimKernGradientsimKernParamInitsimXrbfKernComputesimXrbfKernGradientsimXsimKernComputesimXsimKernGradientTFTF<-translateKernComputetranslateKernDiagComputetranslateKernExpandParamtranslateKernExtractParamtranslateKernGradienttranslateKernParamInitvar.exprsvar.exprs<-whiteKernComputewhiteKernDiagComputewhiteKernDisplaywhiteKernExpandParamwhiteKernExtractParamwhiteKernGradientwhiteKernParamInitwhiteXwhiteKernComputewhiteXwhiteKernGradientwrite.scores

Dependencies:annotateAnnotationDbiaskpassBiobaseBiocGenericsBiostringsbitbit64bitopsblobcachemcaToolsclicpp11crayoncurlDBIfastmapgenericsGenomeInfoDbGenomeInfoDbDatagluegplotsgtoolshttrIRangesjsonliteKEGGRESTKernSmoothlifecyclememoisemimeopensslpkgconfigplogrpngR6rlangRSQLiteS4VectorssysUCSC.utilsvctrsXMLxtableXVector

tigre User Guide

Rendered fromtigre.Rnwusingutils::Sweaveon Dec 26 2024.

Last update: 2020-03-01
Started: 2012-09-25

Readme and manuals

Help Manual

Help pageTopics
tigre - Transcription factor Inference through Gaussian process Reconstruction of Expressiontigre-package tigre
Fragment of 12 time point Drosophila embryonic development microarray gene expression time seriesdrosophila_gpsim_fragment
Fragment of 12 time point Drosophila embryonic development microarray gene expression time seriesdrosophila_mmgmos_fragment
Export results to an SQLite databaseexport.scores
Class to contain time series expression assaysExpressionTimeSeries ExpressionTimeSeries-class initialize,ExpressionTimeSeries-method var.exprs var.exprs,ExpressionTimeSeries-method var.exprs<- var.exprs<-,ExpressionTimeSeries-method
Constrains a parameter.boundedTransform expTransform sigmoidTransform
Generating models with the given datagenerateModels
Fit a GP modelGPLearn
A container for gpsim modelsGPModel GPModel-class initialize,GPModel-method is.GPModel is.GPModel,GPModel-method modelStruct modelStruct,GPModel-method modelStruct<- modelStruct<-,GPModel,list-method modelType modelType,GPModel-method show,GPModel-method
Plot GP(DI)SIM modelsGPPlot
Ranking possible target genes or regulatorsGPRankTargets GPRankTFs
Create a GPSIM/GPDISIM model.gpdisimCreate gpsimCreate
Compute the kernel given the parameters and X.cmpndKernCompute cmpndKernDiagCompute disimKernCompute disimKernDiagCompute disimXdisimKernCompute disimXrbfKernCompute disimXsimKernCompute kernCompute kernDiagCompute mlpKernCompute multiKernCompute multiKernDiagCompute rbfKernCompute rbfKernDiagCompute simKernCompute simKernDiagCompute simXrbfKernCompute simXsimKernCompute translateKernCompute translateKernDiagCompute whiteKernCompute whiteKernDiagCompute whiteXwhiteKernCompute
Initialise a kernel structure.cmpndKernParamInit disimKernParamInit gammaPriorParamInit invgammaPriorParamInit kernCreate kernParamInit mlpKernParamInit multiKernParamInit priorCreate priorParamInit rbfKernParamInit simKernParamInit translateKernParamInit whiteKernParamInit
Compute the gradient of the kernel wrt X.cmpndKernDiagGradX cmpndKernGradX kernDiagGradX kernGradX mlpKernDiagGradX mlpKernGradX
Compute the gradient wrt the kernel parameters.cmpndKernGradient disimKernGradient disimXdisimKernGradient disimXrbfKernGradient disimXsimKernGradient kernGradient mlpKernGradient multiKernGradient rbfKernGradient simKernGradient simXrbfKernGradient simXsimKernGradient translateKernGradient whiteKernGradient whiteXwhiteKernGradient
Helper function for computing the log of differencelnDiffErfs
Display a model.cmpndKernDisplay disimKernDisplay gpdisimDisplay gpsimDisplay kernDisplay modelDisplay multiKernDisplay rbfKernDisplay simKernDisplay whiteKernDisplay
Update a model structure with new parameters or update the posterior processes.cgpdisimExpandParam cgpdisimUpdateProcesses cgpsimExpandParam cgpsimUpdateProcesses cmpndKernExpandParam disimKernExpandParam gammaPriorExpandParam gpdisimExpandParam gpdisimUpdateProcesses gpsimExpandParam gpsimUpdateProcesses invgammaPriorExpandParam kernExpandParam mlpKernExpandParam modelExpandParam modelUpdateProcesses multiKernExpandParam priorExpandParam rbfKernExpandParam simKernExpandParam translateKernExpandParam whiteKernExpandParam
Extract the parameters of a model.cgpdisimExtractParam cgpsimExtractParam cmpndKernExtractParam disimKernExtractParam gammaPriorExtractParam gpdisimExtractParam gpsimExtractParam invgammaPriorExtractParam kernExtractParam mlpKernExtractParam modelExtractParam multiKernExtractParam priorExtractParam rbfKernExtractParam simKernExtractParam translateKernExtractParam whiteKernExtractParam
Model log-likelihood/objective error function and its gradient.cgpdisimGradient cgpdisimLogLikeGradients cgpdisimLogLikelihood cgpdisimObjective cgpsimGradient cgpsimLogLikeGradients cgpsimLogLikelihood cgpsimObjective gammaPriorGradient gammaPriorLogProb gpdisimGradient gpdisimLogLikeGradients gpdisimLogLikelihood gpdisimObjective gpsimGradient gpsimLogLikeGradients gpsimLogLikelihood gpsimObjective invgammaPriorGradient invgammaPriorLogProb kernPriorGradient kernPriorLogProb modelGradient modelLogLikelihood modelObjective priorGradient priorLogProb
Tie parameters of a model together.modelTieParam
Returns function for parameter constraint.optimiDefaultConstraint
Plot ExpressionTimeSeries dataplotTimeseries
Processing expression time seriesprocessData processRawData
Optimise the given function using (scaled) conjugate gradients.CGoptim cgpsimOptimise modelOptimise optimiDefaultOptions SCGoptim
Class "scoreList"baseloglikelihoods baseloglikelihoods,scoreList-method baseloglikelihoods<- baseloglikelihoods<-,scoreList,numeric-method c,scoreList-method datasetName datasetName,scoreList-method datasetName<- datasetName<-,scoreList,character-method experimentSet experimentSet,scoreList-method experimentSet<- experimentSet<-,scoreList,character-method genes genes,scoreList-method genes<- genes<-,scoreList,list-method knownTargets knownTargets,scoreList-method knownTargets<- knownTargets<-,scoreList,character-method length,scoreList-method loglikelihoods loglikelihoods,scoreList-method loglikelihoods<- loglikelihoods<-,scoreList,numeric-method modelArgs modelArgs,scoreList-method modelArgs<- modelArgs<-,scoreList,list-method params params,scoreList-method params<- params<-,scoreList,list-method scoreList scoreList-class sharedModel sharedModel,scoreList-method sharedModel<- sharedModel<-,scoreList,list-method show,scoreList-method sort,scoreList-method TF TF,scoreList-method TF<- TF<-,scoreList,character-method write.scores write.scores,scoreList-method [,scoreList,ANY-method [,scoreList-method