Package: sparsenetgls 1.25.0

Irene Zeng

sparsenetgls: Using Gaussian graphical structue learning estimation in generalized least squared regression for multivariate normal regression

The package provides methods of combining the graph structure learning and generalized least squares regression to improve the regression estimation. The main function sparsenetgls() provides solutions for multivariate regression with Gaussian distributed dependant variables and explanatory variables utlizing multiple well-known graph structure learning approaches to estimating the precision matrix, and uses a penalized variance covariance matrix with a distance tuning parameter of the graph structure in deriving the sandwich estimators in generalized least squares (gls) regression. This package also provides functions for assessing a Gaussian graphical model which uses the penalized approach. It uses Receiver Operative Characteristics curve as a visualization tool in the assessment.

Authors:Irene Zeng [aut, cre], Thomas Lumley [ctb]

sparsenetgls_1.25.0.tar.gz
sparsenetgls_1.25.0.zip(r-4.5)sparsenetgls_1.25.0.zip(r-4.4)sparsenetgls_1.25.0.zip(r-4.3)
sparsenetgls_1.25.0.tgz(r-4.4-any)sparsenetgls_1.25.0.tgz(r-4.3-any)
sparsenetgls_1.25.0.tar.gz(r-4.5-noble)sparsenetgls_1.25.0.tar.gz(r-4.4-noble)
sparsenetgls_1.25.0.tgz(r-4.4-emscripten)sparsenetgls_1.25.0.tgz(r-4.3-emscripten)
sparsenetgls.pdf |sparsenetgls.html
sparsenetgls/json (API)
NEWS

# Install 'sparsenetgls' in R:
install.packages('sparsenetgls', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:sparsenetgls-1.25.0(bioc 3.21)sparsenetgls-1.24.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologygraphandnetworkregressionmetabolomicscopynumbervariationmassspectrometryproteomicssoftwarevisualization

3.30 score 3 scripts 152 downloads 8 exports 21 dependencies

Last updated 2 months agofrom:76afb55c6c. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 19 2024
R-4.5-winOKDec 19 2024
R-4.5-linuxOKDec 19 2024
R-4.4-winOKDec 19 2024
R-4.4-macOKDec 19 2024
R-4.3-winOKDec 19 2024
R-4.3-macOKDec 19 2024

Exports:assess_directconvertbetaglassonet2lassoglmnetpath_result_for_rocplot_rocplotsnglssparsenetgls

Dependencies:clicodetoolscpp11foreachglmnetgluehugeigraphiteratorslatticelifecyclemagrittrMASSMatrixpkgconfigRcppRcppEigenrlangshapesurvivalvctrs

Introduction to sparsenetgls

Rendered fromvignettes_sparsenetgls.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2020-07-26
Started: 2018-08-09