Package 'sparsenetgls'

Title: Using Gaussian graphical structue learning estimation in generalized least squared regression for multivariate normal regression
Description: The package provides methods of combining the graph structure learning and generalized least squares regression to improve the regression estimation. The main function sparsenetgls() provides solutions for multivariate regression with Gaussian distributed dependant variables and explanatory variables utlizing multiple well-known graph structure learning approaches to estimating the precision matrix, and uses a penalized variance covariance matrix with a distance tuning parameter of the graph structure in deriving the sandwich estimators in generalized least squares (gls) regression. This package also provides functions for assessing a Gaussian graphical model which uses the penalized approach. It uses Receiver Operative Characteristics curve as a visualization tool in the assessment.
Authors: Irene Zeng [aut, cre], Thomas Lumley [ctb]
Maintainer: Irene Zeng <[email protected]>
License: GPL-3
Version: 1.25.0
Built: 2024-11-19 04:26:19 UTC
Source: https://github.com/bioc/sparsenetgls

Help Index


The assess_direct() function

Description

The assess_direct function is designed to evaluate the prediction accuracy of a Gaussian Graphical model(GGM) comparing with the true graph structure with a known precision matrix.

Usage

assess_direct(PREC_for_graph, OMEGA_for_graph, p)

Arguments

PREC_for_graph

It is the known precision matrix which is used to assess the estimated precision matrix from GGM.

OMEGA_for_graph

It is the estimated precision matrix from a GGM.

p

It is an integer representing the number of dimension of both the known and estimated precision matrix.

Value

Return the list of assessment results including sensitivity, specificity, NPV(test negative), PPV(test positive), true positive and true negative.

Examples

prec1 <- matrix(c(0,2,3,1,0,0.5,0,0,0.4),nrow=3,ncol=3)
prec0 <- matrix(c(0,1,2,1,0.5,0.2,0,1,1),nrow=3,ncol=3)

assessresult <- assess_direct(prec1,prec0,p=3)

bandprec data for vignette

Description

bandprec and bandvar store the precision matrix and variance covariance matrix with the band diagonal structure.

Usage

data("bandprec")

Format

A data frame with 50 observations on the following 50 variables.

V1

a numeric vector

V2

a numeric vector

V3

a numeric vector

V4

a numeric vector

V5

a numeric vector

V6

a numeric vector

V7

a numeric vector

V8

a numeric vector

V9

a numeric vector

V10

a numeric vector

V11

a numeric vector

V12

a numeric vector

V13

a numeric vector

V14

a numeric vector

V15

a numeric vector

V16

a numeric vector

V17

a numeric vector

V18

a numeric vector

V19

a numeric vector

V20

a numeric vector

V21

a numeric vector

V22

a numeric vector

V23

a numeric vector

V24

a numeric vector

V25

a numeric vector

V26

a numeric vector

V27

a numeric vector

V28

a numeric vector

V29

a numeric vector

V30

a numeric vector

V31

a numeric vector

V32

a numeric vector

V33

a numeric vector

V34

a numeric vector

V35

a numeric vector

V36

a numeric vector

V37

a numeric vector

V38

a numeric vector

V39

a numeric vector

V40

a numeric vector

V41

a numeric vector

V42

a numeric vector

V43

a numeric vector

V44

a numeric vector

V45

a numeric vector

V46

a numeric vector

V47

a numeric vector

V48

a numeric vector

V49

a numeric vector

V50

a numeric vector

Examples

data(bandprec)
## maybe str(bandprec) ; plot(bandprec) ...

The convertbeta() function

Description

The covertbeta function is designed to convert the regression coefficients derived from the standardized data.

Usage

convertbeta(X, Y, q, beta0)

Arguments

X

It is a dataset of explanatory variables.

Y

It is the multivariate response variables.

q

It is an integer representing the number of explanatory variables and intercept.

beta0

The vector contains the regression coefficients result from sparsenetgls.

Value

Return the list of converted regression coefficients of the explanatory variables 'betaconv' and intercept value 'betaconv_int'.

Examples

X <- mvrnorm(n=20,mu=rep(0,5),Sigma=Diagonal(5,rep(1,5)))
Y <- mvrnorm(n=20,mu=rep(0.5,10),Sigma=Diagonal(10,rep(1,10)))
fitmodel <-  sparsenetgls(responsedata=Y,predictdata=X,nlambda=5,ndist=2,
method='elastic')
#Example of converting the regression coef of the first lamda
convertbeta(X=X,Y=Y,q=5+1,beta0=fitmodel$beta[,1])

The glassonet2() function

Description

The glassonet2 function is designed to learn the graph structure, the corresponding precision matrix and covariance matrix by using the graph lasso method.

Usage

glassonet2(Y0, nlambda = nlambda, lambda.min.ratio = 0.001, method)

Arguments

Y0

The data matrix for the GGM model.

nlambda

The number of interval used in the penalized path in lasso and elastics. It results in the number of lambda values to be used in the penalization. The default value is nlambda assigned in the parent function sparsenetgls().

lambda.min.ratio

It is the default parameter set in function huge() in the package 'huge'. Quoted from huge(), it is the minimal value of lambda, being a fraction of the upper bound (MAX) of the regularization/ thresholding parameter that makes all the estimates equal to 0. The default value is 0.001.

method

There are two options for the method parameter which is provided in the huge() function. One is 'glasso' and the other one is 'mb'.

Value

Return the precision matrix 'OMEGAMATRIX', penalized path parameter lambda 'lambda' and covariance matrix 'COVMATRIX'.

Examples

n=20
VARknown <- rWishart(1, df=4, Sigma=matrix(c(1,0,0,0,1,0,0,0,1),
nrow=3,ncol=3))
Y0 <- mvrnorm(n=n,mu=rep(0.5,3),Sigma=VARknown[,,1])
fitglasso <- glassonet2(Y0=Y0,nlambda=5,method='glasso')

The lassoglmnet() function

Description

The lassoglmnet function is designed to learn the graph structure by using the lasso and elastics net methods.

Usage

lassoglmnet(Y0, nlambda = 10, alpha)

Arguments

Y0

The data matrix for the GGM model.

nlambda

The number of interval used in the penalized path in lasso and elastics. It results in the number of lambda values to be used in the penalization. The default value is 10.

alpha

The value to be used in enet, it has values between 0 and 1. The value of 0 is corresponding to l-1 penalization, and 1 is corresponding to the l-2 regularization (Ridge regression). The other values between 0 and 1 will result in a combination of l1-l2 norm regularization named as elastic net.

Value

Return the regression coefficients of glmnet 'coef_glmnet', residuals from the glmnet 'resid_glmnet' and lambda.

Examples

n=20
VARknown <- rWishart(1,df=4,Sigma=matrix(c(1,0,0,0,1,0,0,0,1),nrow=3,ncol=3))
Y0 <- mvrnorm(n=n,mu=rep(0.5,3),Sigma=VARknown[,,1])
fitlasso <- lassoglmnet(Y0=Y0,alpha=0.5)

The path_result_for_roc() function

Description

The path_result_for_roc function is designed to evaluate the the prediction accuracy of a series Gaussian Graphical models (GGM) comparing to the true graph structure. The GGM must use a l-p norm regularizations (p=1,2) with the series of solutions conditional on the regularization parameter.

Usage

path_result_for_roc(PREC_for_graph, OMEGA_path, pathnumber)

Arguments

PREC_for_graph

It is the known precision matrix which is used to assess the estimated precision matrix from GGM.

OMEGA_path

It is a matrix comprising of a series estimated precision matrices from a GGM model using a penalized path based on a range of structure parameters (i.e. λ,[0,1]\lambda,\in [0,1]).

pathnumber

It represents the number of graph models (i.e. λ\lambda) for the evaluation.The value of pathnumber can be the same number used in a penalized path.

Value

Return the list of assessment results for a series of precision matrices. The results include sensitivity/specificity/NPV/PPV

Examples

prec1 <- matrix(c(0,2,3,1,0,0.5,0,0,0.4),nrow=3,ncol=3)
Omega_est <- array(dim=c(3,3,3))
Omega_est[,,1] <- matrix(c(0,1,2,1,0.5,0.2,0,1,1),nrow=3,ncol=3)
Omega_est[,,2] <- matrix(c(0,1,0,1,0.5,0.2,0,1,1),nrow=3,ncol=3)
Omega_est[,,3] <- matrix(c(0,1,0,1,0,0.2,0,1,1),nrow=3,ncol=3)
rocpath <- path_result_for_roc(PREC_for_graph=prec1,OMEGA_path=Omega_est,
pathnumber=3)

The plot_roc() function

Description

The plot_roc function is designed to produce the Receiver Operative Characteristics (ROC) Curve for visualizing the prediction accuracy of a Gaussian Graphical model (GGM) to the true graph structure. The GGM must use a l-p norm regularizations (p=1,2) with the series of solutions conditional on the regularization parameter.

Usage

plot_roc(result_assessment, group = TRUE, ngroup = 0, est_names)

Arguments

result_assessment

It is the list result from function path_result_for_roc() which has five-dimensions recording the path number (i.e. the order of λ\lambda ), the sensitivity, the specificity, the Negative predicted value (NPV) and the Positive predicted value (PPV) respectively.

group

It is a logical parameter indicating if the result_assessment is for several GGM models. When it is TRUE, it produceS the ROC from several GGM models. when it is FALSE, it only produces a ROC for one model.

ngroup

It is an integer recording the number of models when group is TRUE.

est_names

it is used for labeling the GGM model in legend of ROC curve.

Value

Return the plot of Receiver Operational Curve

Examples

prec1 <- matrix(c(0,2,3,1,0,0.5,0,0,0.4),nrow=3,ncol=3)
Omega_est <- array(dim=c(3,3,3))
Omega_est[,,1] <- matrix(c(1,1,1,0.2,0.5,0.2,2,0.2,0.3),nrow=3,ncol=3)
Omega_est[,,2] <- matrix(c(0,1,1,1,0,0,0,0,1),nrow=3,ncol=3)
Omega_est[,,3] <- matrix(c(0,0,0,0,0,0,0,0,0),nrow=3,ncol=3)
roc_path_result <- path_result_for_roc(PREC_for_graph=prec1,
OMEGA_path=Omega_est,pathnumber=3)
plot_roc(result_assessment=roc_path_result,group=FALSE,ngroup=0,
est_names='test example')

The plotsngls() function

Description

The plotsngls function is designed to provide the line plots of variance of regression coefficients vs. values of penalized parameter lambda in gls regression, when the tuning parameter d is the maximal value. It also provides the graph structure of the estimated precision matrix in the penalized path.

Usage

plotsngls(
  fitgls,
  lineplot = FALSE,
  nrow,
  ncol,
  structplot = TRUE,
  ith_lambda = 1
)

Arguments

fitgls

It is a returning object of the sparsnetgls() multivariate generalized least squared regression function.

lineplot

It is a logical indicator. When value=TRUE, it will provide line plot.

nrow

It is a graph parameter representing number of rows in the lineplot.

ncol

It is a graph parameter representing number of columns in the lineplot.

structplot

It is a logical indicator. When value=TRUE, it will provide the structure plot of the specified precision matrix from the series of the sparsenetgls results.

ith_lambda

It is the number for the specified precision matrix to be used in the structplot. It represents the ordering number in the precision matrix series from sparsenetgls.

Value

Return a plot subject for sparsenetgls including the plot of variance vs lambda and graph structure of the precision matrix estimates.

Examples

ndox=5;p=3;n=200
VARknown <- rWishart(1, df=4, Sigma=matrix(c(1,0,0,0,1,0,0,0,1),
nrow=3,ncol=3))
normc <- mvrnorm(n=n,mu=rep(0,p),Sigma=VARknown[,,1])
Y0=normc
##u-beta
u <- rep(1,ndox)
X <- mvrnorm(n=n,mu=rep(0,ndox),Sigma=Diagonal(ndox,rep(1,ndox)))        
X00 <- scale(X,center=TRUE,scale=TRUE)
X0 <- cbind(rep(1,n),X00)
#Add predictors of simulated CNA
abundance1 <- scale(Y0,center=TRUE,scale=TRUE)+as.vector(X00%*%as.matrix(u))

##sparsenetgls()
fitgls <- sparsenetgls(responsedata=abundance1,predictdata=X00,
nlambda=5,ndist=4,method='lasso')
plotsngls(fitgls, ith_lambda=5)
#plotsngls(fitgls,lineplot=TRUE,structplot=FALSE,nrow=2,ncol=3)

The sparsenetgls() function

Description

The sparsenetgls functin is a combination of the graph structure learning and generalized least square regression. It is designed for multivariate regression uses penalized and/or regularised approach to deriving the precision and covariance Matrix of the multivariate Gaussian distributed responses. Gaussian Graphical model is used to learn the structure of the graph and construct the precision and covariance matrix. Generalized least squared regression is used to derive the sandwich estimation of variances-covariance matrix for the regression coefficients of the explanatory variables, conditional on the solutions of the precision and covariance matrix.

Usage

sparsenetgls(
  responsedata,
  predictdata,
  nlambda = 10,
  ndist = 5,
  method = c("lasso", "glasso", "elastic", "mb"),
  lambda.min.ratio = 1e-05
)

Arguments

responsedata

It is a data matrix of multivariate normal distributed response variables. Each row represents one observation sample and each column represents one variable.

predictdata

It is a data matrix of explanatory variables and has the same number of rows as the response data.

nlambda

It is an interger recording the number of lambda value used in the penalized path for estimating the precision matrix. The default value is 10.

ndist

It is an interger recording the number of distant value used in the penalized path for estimating the covariance matrix. The default value is 5.

method

It is the option parameter for selecting the penalized method to derive the precision matrix in the calculation of the sandwich estimator of regression coefficients and their variance-covariance matrix. The options are 'glasso', 'lasso','elastic', and 'mb'. 'glasso' use the graphical lasso method documented in Yuan and lin (2007) and Friedman, Hastie et al (2007). It used the imported function from R package 'huge'. 'lasso' use the penalized liner regression among the response variables (Y[,j]~Y[,1]+...Y[,j-1],Y[,j+1] +...Y[,p]) to estimate the precision matrix. 'elastic' uses the enet-regularized linear regression among the response variables to estimate the precision matrix. Both of these methods utilize the coordinate descending algorithm documentd in Friedman, J., Hastie, T. and Tibshirani, R. (2008) and use the imported function from R package 'glmnet'. 'mb' use the Meinshausen and Buhlmann penalized linear regression and the neighbourhood selection with the lasso approach (2006) to select the covariance terms and derive the corresponding precision matrix ; It uses the imported function from 'huge' in function sparsenetgls().

lambda.min.ratio

It is the default parameter set in function huge() in the package 'huge'. Quoted from huge(), it is the minial value of lambda, being a fraction of the uppperbound (MAX) of the regularization/thresholding parameter that makes all the estimates equal to 0. The default value is 0.001. It is only applicable when 'glasso' and 'mb' method is used.

Value

Return the list of regression results including the regression coefficients, array of variance-covariance matrix for different lambda and distance values, lambda and distance (power) values, bic and aic for model fitting, and the list of precision matrices on the penalized path.

Examples

ndox=5; p=3; n=1000
VARknown <- rWishart(1, df=4, Sigma=matrix(c(1,0,0,0,1,0,0,0,1),
nrow=3,ncol=3))
normc <- mvrnorm(n=n,mu=rep(0,p),Sigma=VARknown[,,1])
Y0=normc
##u-beta
u <- rep(1,ndox)
X <- mvrnorm(n=n,mu=rep(0,ndox),Sigma=Diagonal(ndox,rep(1,ndox)))
X00 <- scale(X,center=TRUE,scale=TRUE)
X0 <- cbind(rep(1,n),X00)
#Add predictors of simulated CNA
abundance1 <- scale(Y0,center=TRUE,scale=TRUE)+as.vector(X00%*%as.matrix(u))

##sparsenetgls()
fitgls <- sparsenetgls(responsedata=abundance1,predictdata=X00,
nlambda=5,ndist=2,method='elastic')
nlambda=5
##rescale regression coefficients from sparsenetgls
#betagls <- matrix(nrow=nlambda, ncol=ndox+1)
#for (i in seq_len(nlambda))   
#betagls[i,] <- convertbeta(Y=abundance1, X=X00, q=ndox+1,
#beta0=fitgls$beta[,i])$betaconv