Package: scPCA 1.21.1

Philippe Boileau

scPCA: Sparse Contrastive Principal Component Analysis

A toolbox for sparse contrastive principal component analysis (scPCA) of high-dimensional biological data. scPCA combines the stability and interpretability of sparse PCA with contrastive PCA's ability to disentangle biological signal from unwanted variation through the use of control data. Also implements and extends cPCA.

Authors:Philippe Boileau [aut, cre, cph], Nima Hejazi [aut], Sandrine Dudoit [ctb, ths]

scPCA_1.21.1.tar.gz
scPCA_1.21.1.zip(r-4.5)scPCA_1.21.1.zip(r-4.4)scPCA_1.21.1.zip(r-4.3)
scPCA_1.21.1.tgz(r-4.5-any)scPCA_1.21.1.tgz(r-4.4-any)scPCA_1.21.0.tgz(r-4.3-any)
scPCA_1.21.1.tar.gz(r-4.5-noble)scPCA_1.21.1.tar.gz(r-4.4-noble)
scPCA_1.21.1.tgz(r-4.4-emscripten)scPCA_1.21.1.tgz(r-4.3-emscripten)
scPCA.pdf |scPCA.html
scPCA/json (API)
NEWS

# Install 'scPCA' in R:
install.packages('scPCA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/philboileau/scpca/issues

Datasets:
  • background_df - Simulated Background Data for cPCA and scPCA
  • toy_df - Simulated Target Data for cPCA and scPCA

On BioConductor:scPCA-1.21.0(bioc 3.21)scPCA-1.20.0(bioc 3.20)

principalcomponentgeneexpressiondifferentialexpressionsequencingmicroarrayrnaseqbioconductorcontrastive-learningdimensionality-reduction

5.94 score 12 stars 29 scripts 232 downloads 1 exports 63 dependencies

Last updated 6 days agofrom:4329b9a777. Checks:1 OK, 5 NOTE, 1 FAILURE, 1 ERROR. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 11 2025
R-4.5-winNOTEFeb 11 2025
R-4.5-macERRORFeb 11 2025
R-4.5-linuxNOTEFeb 11 2025
R-4.4-winNOTEFeb 11 2025
R-4.4-macNOTEFeb 11 2025
R-4.3-winNOTEFeb 11 2025
R-4.3-macOUTDATEDJan 29 2025

Exports:scPCA

Dependencies:abindassertthatBHBiocGenericsBiocParallelcliclustercodetoolscoopcpp11crayondata.tableDelayedArraydigestdplyrelasticnetfansiformatRfutile.loggerfutile.optionsfuturefuture.applygenericsglobalsglueIRangeskernlablambda.rlarslatticelifecyclelistenvmagrittrMatrixMatrixGenericsmatrixStatsorigamiparallellypillarpkgconfigpurrrR6rbibutilsRcppRcppEigenRdpackrlangRSpectrarsvdS4ArraysS4VectorsScaledMatrixsnowSparseArraysparsepcastringistringrtibbletidyselectutf8vctrswithrXVector

scPCA: Sparse contrastive principal component analysis

Rendered fromscpca_intro.Rmdusingknitr::rmarkdownon Feb 11 2025.

Last update: 2021-05-21
Started: 2019-05-02