Package: satuRn 1.15.0
satuRn: Scalable Analysis of Differential Transcript Usage for Bulk and Single-Cell RNA-sequencing Applications
satuRn provides a higly performant and scalable framework for performing differential transcript usage analyses. The package consists of three main functions. The first function, fitDTU, fits quasi-binomial generalized linear models that model transcript usage in different groups of interest. The second function, testDTU, tests for differential usage of transcripts between groups of interest. Finally, plotDTU visualizes the usage profiles of transcripts in groups of interest.
Authors:
satuRn_1.15.0.tar.gz
satuRn_1.15.0.zip(r-4.5)satuRn_1.15.0.zip(r-4.4)satuRn_1.15.0.zip(r-4.3)
satuRn_1.15.0.tgz(r-4.4-any)satuRn_1.15.0.tgz(r-4.3-any)
satuRn_1.15.0.tar.gz(r-4.5-noble)satuRn_1.15.0.tar.gz(r-4.4-noble)
satuRn_1.15.0.tgz(r-4.4-emscripten)satuRn_1.15.0.tgz(r-4.3-emscripten)
satuRn.pdf |satuRn.html✨
satuRn/json (API)
NEWS
# Install 'satuRn' in R: |
install.packages('satuRn', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/statomics/saturn/issues
- Tasic_counts_vignette - A 'Matrix' with transcript-level counts derived from our case study which builds on the dataset of Tasic et al. We used Salmon (V1.1.0) to quantify all L5IT cells (both for ALM and VISp tissue) from mice with a normal eye condition. From these cells, we randomly sampled 20 cells of each of the following cell types to use for this vignette; L5_IT_VISp_Hsd11b1_Endou, L5_IT_ALM_Tmem163_Dmrtb1 and L5_IT_ALM_Tnc. The data has already been leniently filtered with the 'filterByExpr' function of edgeR.
- Tasic_metadata_vignette - Metadata associated with the expression matrix 'Tasic_counts_vignette'. See '?Tasic_counts_vignette' for more information on the dataset.
- sumExp_example - A 'SummarizedExperiment' derived from our case study which builds on the dataset of Tasic et al. It contains the same cells as the data object used in the vignette (see '?Tasic_counts_vignette' for more information). In this SummarizedExperiment, we performed a filtering with 'filterByExpr' of edgeR with more stringent than default parameter settings (min.count = 100,min.total.count = 200, large.n = 50, min.prop = 0.9) to reduced the number of retained transcripts. We used this object to create an executable example in the help files of satuRn.
On BioConductor:satuRn-1.15.0(bioc 3.21)satuRn-1.14.0(bioc 3.20)
regressionexperimentaldesigndifferentialexpressiongeneexpressionrnaseqsequencingsoftwaresinglecelltranscriptomicsmultiplecomparisonvisualization
Last updated 23 days agofrom:66563891f5. Checks:OK: 1 NOTE: 4 WARNING: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win | NOTE | Oct 31 2024 |
R-4.5-linux | NOTE | Oct 31 2024 |
R-4.4-win | NOTE | Oct 31 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
R-4.3-win | NOTE | Oct 31 2024 |
R-4.3-mac | WARNING | Oct 31 2024 |
Exports:fitDTUgetCoefgetDFgetDfPosteriorgetDispersiongetModelplotDTUStatModeltestDTU
Dependencies:abindaskpassBHBiobaseBiocGenericsBiocParallelbootclicodetoolscolorspacecpp11crayoncurlDelayedArrayfansifarverformatRfutile.loggerfutile.optionsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtablehttrIRangesisobandjsonlitelabelinglambda.rlatticelifecyclelimmalocfdrmagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimemunsellnlmeopensslpbapplypillarpkgconfigR6RColorBrewerrlangS4ArraysS4VectorsscalessnowSparseArraystatmodSummarizedExperimentsystibbleUCSC.utilsutf8vctrsviridisLitewithrXVectorzlibbioc