Package: ramr 1.15.1

Oleksii Nikolaienko

ramr: Detection of Rare Aberrantly Methylated Regions in Array and NGS Data

ramr is an R package for detection of epimutations (i.e., infrequent aberrant DNA methylation events) in large data sets obtained by methylation profiling using array or high-throughput methylation sequencing. In addition, package provides functions to visualize found aberrantly methylated regions (AMRs), to generate sets of all possible regions to be used as reference sets for enrichment analysis, and to generate biologically relevant test data sets for performance evaluation of AMR/DMR search algorithms.

Authors:Oleksii Nikolaienko [aut, cre]

ramr_1.15.1.tar.gz
ramr_1.15.1.zip(r-4.5)ramr_1.15.1.zip(r-4.4)ramr_1.15.1.zip(r-4.3)
ramr_1.15.1.tgz(r-4.5-any)ramr_1.15.1.tgz(r-4.4-any)ramr_1.15.1.tgz(r-4.3-any)
ramr_1.15.1.tar.gz(r-4.5-noble)ramr_1.15.1.tar.gz(r-4.4-noble)
ramr_1.15.1.tgz(r-4.4-emscripten)ramr_1.15.1.tgz(r-4.3-emscripten)
ramr.pdf |ramr.html
ramr/json (API)
NEWS

# Install 'ramr' in R:
install.packages('ramr', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/bbcg/ramr/issues

Datasets:
  • ramr.data - Simulated Illumina HumanMethylation 450k data set with 3000 CpGs and 100 samples
  • ramr.samples - Simulated Illumina HumanMethylation 450k data set with 3000 CpGs and 100 samples
  • ramr.tp.nonunique - Simulated Illumina HumanMethylation 450k data set with 3000 CpGs and 100 samples
  • ramr.tp.unique - Simulated Illumina HumanMethylation 450k data set with 3000 CpGs and 100 samples

On BioConductor:ramr-1.15.1(bioc 3.21)ramr-1.14.0(bioc 3.20)

dnamethylationdifferentialmethylationepigeneticsmethylationarraymethylseqaberrant-methylationbioconductordna-methylationepimutationmethylation-microarraysnext-generation-sequencing

4.48 score 5 scripts 180 downloads 5 exports 64 dependencies

Last updated 2 months agofrom:4e3b57e0e9. Checks:1 OK, 7 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 17 2025
R-4.5-winNOTEFeb 17 2025
R-4.5-macNOTEFeb 17 2025
R-4.5-linuxNOTEFeb 17 2025
R-4.4-winNOTEFeb 17 2025
R-4.4-macNOTEFeb 17 2025
R-4.3-winNOTEFeb 17 2025
R-4.3-macNOTEFeb 17 2025

Exports:getAMRgetUniverseplotAMRsimulateAMRsimulateData

Dependencies:askpassBiocGenericsclicodetoolscolorspacecurldata.tabledigestdoParalleldoRNGEnvStatsExtDistfansifarverforeachgamlssgamlss.datagamlss.distgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtablehttrIRangesisobanditeratorsjsonlitelabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmgcvmimemunsellnlmenloptrnortestnumDerivopenssloptimxpillarpkgconfigpracmaR6RColorBrewerrlangrngtoolsS4VectorsscalessurvivalsystibbleUCSC.utilsutf8vctrsviridisLitewithrXVector

The ramr User's Guide

Rendered fromramr.Rmdusingknitr::rmarkdownon Feb 17 2025.

Last update: 2024-12-17
Started: 2020-11-04