Package: pRoloc 1.47.1
pRoloc: A unifying bioinformatics framework for spatial proteomics
The pRoloc package implements machine learning and visualisation methods for the analysis and interogation of quantitiative mass spectrometry data to reliably infer protein sub-cellular localisation.
Authors:
pRoloc_1.47.1.tar.gz
pRoloc_1.47.1.zip(r-4.5)pRoloc_1.47.1.zip(r-4.4)pRoloc_1.47.1.zip(r-4.3)
pRoloc_1.47.1.tgz(r-4.4-x86_64)pRoloc_1.47.1.tgz(r-4.4-arm64)pRoloc_1.47.1.tgz(r-4.3-x86_64)pRoloc_1.47.1.tgz(r-4.3-arm64)
pRoloc_1.47.1.tar.gz(r-4.5-noble)pRoloc_1.47.1.tar.gz(r-4.4-noble)
pRoloc_1.47.1.tgz(r-4.4-emscripten)pRoloc_1.47.1.tgz(r-4.3-emscripten)
pRoloc.pdf |pRoloc.html✨
pRoloc/json (API)
NEWS
# Install 'pRoloc' in R: |
install.packages('pRoloc', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/lgatto/proloc/issues
- andy2011params - Class '"AnnotationParams"'
- dunkley2006params - Class '"AnnotationParams"'
On BioConductor:pRoloc-1.47.0(bioc 3.21)pRoloc-1.46.0(bioc 3.20)
immunooncologyproteomicsmassspectrometryclassificationclusteringqualitycontrolbioconductorproteomics-dataspatial-proteomicsvisualisation
Last updated 27 days agofrom:11d5560a31. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 24 2024 |
R-4.5-win-x86_64 | NOTE | Nov 24 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 24 2024 |
R-4.4-win-x86_64 | NOTE | Nov 24 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 24 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 24 2024 |
R-4.3-win-x86_64 | NOTE | Nov 24 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 24 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 24 2024 |
Exports:addGoAnnotationsaddLegendaddMarkerschainscheckFeatureNamesOverlapcheckFvarOverlapchi2classWeightsclustDistClustDistListcol1col2combineThetaRegResdata1data2empPvaluesf1CountfavourPrimaryfDataToUnknownfilterBinMSnSetfilterMaxMarkersfilterMinMarkersfilterZeroColsfilterZeroRowsflipGoTermIdgetAnnotationParamsgetF1ScoresgetGOEvidenceCodesgetGOFromFeaturesgetLisacolgetMarkerClassesgetMarkersgetNormDistgetOldcolgetParamsgetPredictionsgetRegularisedParamsgetRegularizedParamsgetSeedgetStockcolgetStockpchgetUnknowncolgetUnknownpchgetWarningsgeweke_testgoIdToTermgoTermToIdhighlightOnPlothighlightOnPlot3DisMrkMatisMrkVecknnClassificationknnOptimisationknnOptimizationknnPredictionknnRegularisationknntlClassificationknntlOptimisationksvmClassificationksvmOptimisationksvmOptimizationksvmPredictionksvmRegularisationlevelPlotlogPosteriorsmakeGoSetmarkerMSnSetmcmc_burn_chainsmcmc_get_meanComponentmcmc_get_meanoutliersProbmcmc_get_outliersmcmc_pool_chainsmcmc_thin_chainsminClassScoreminMarkersMLearnmove2DsmrkConsProfilesmrkHClustmrkMatAndVecmrkMatToVecmrkVecToMatnbClassificationnbOptimisationnbOptimizationnbPredictionnbRegularisationnndistnnetClassificationnnetOptimisationnnetOptimizationnnetPredictionnnetRegularisationorderGoAnnotationsorgQuantsperTurboClassificationperTurboOptimisationperTurboOptimizationphenoDiscoplotplot2Dplot2Dmethodsplot2Dsplot3DplotConsProfilesplotDistplotEllipseplsdaClassificationplsdaOptimisationplsdaOptimizationplsdaPredictionplsdaRegularisationprettyGoTermIdpRolocmarkersqsepQSeprfClassificationrfOptimisationrfOptimizationrfPredictionrfRegularisationsampleMSnSetsetAnnotationParamssetLisacolsetOldcolsetStockcolsetStockpchsetUnknowncolsetUnknownpchshowshowGOEvidenceCodesshowMrkMatspatial2DSpatProtVissubsetMarkerssvmClassificationsvmOptimisationsvmOptimizationsvmPredictionsvmRegularisationtagmMapPredicttagmMapTraintagmMcmcPredicttagmMcmcProcesstagmMcmcTraintagmPredicttestMarkerstestMSnSetthetasunknownMSnSetzerosInBinMSnSet
Dependencies:abindaffyaffyioannotateAnnotationDbiAnnotationFilteraskpassassertthatbase64encBHBiobaseBiocBaseUtilsBiocFileCacheBiocGenericsBiocManagerBiocParallelbiomaRtBiostringsbitbit64blobbslibcachemcaretclasscliclockclueclustercodacodetoolscolorspacecommonmarkcpp11crayoncrosstalkcurldata.tableDBIdbplyrDelayedArraydendextendDEoptimRdiagramdigestdiptestdoParalleldplyre1071evaluatefansifarverfastmapfilelockflexmixFNNfontawesomeforeachformatRfpcfsfutile.loggerfutile.optionsfuturefuture.applygbmgdatagenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggvisglobalsgluegowergridExtragtablegtoolshardhathexbinhighrhmshtmltoolshtmlwidgetshttpuvhttrhttr2hwriterigraphimputeipredIRangesisobanditeratorsjquerylibjsonliteKEGGRESTkernlabKernSmoothknitrlabelinglambda.rLaplacesDemonlaterlatticelavalazyevallifecyclelimmalistenvlpSolvelubridatemagrittrMALDIquantMASSMatrixMatrixGenericsmatrixStatsmclustmemoisemgcvmimemixtoolsmlbenchMLInterfacesModelMetricsmodeltoolsMsCoreUtilsMSnbaseMultiAssayExperimentmunsellmvtnormmzIDmzRncdf4nlmennetnumDerivopensslparallellypcaMethodspillarpkgconfigplogrplotlyplsplyrpngprabcluspreprocessCoreprettyunitspROCprodlimprogressprogressrpromisesProtGenericsproxyPSMatchpurrrQFeaturesR6randomForestrappdirsRColorBrewerRcppRcppArmadillorecipesreshape2Rhdf5librlangrmarkdownrobustbaserpartRSQLiteS4ArraysS4VectorssamplingsassscalessegmentedsfsmiscshapeshinysnowsourcetoolsSparseArraySQUAREMstatmodstringistringrSummarizedExperimentsurvivalsysthreejstibbletidyrtidyselecttimechangetimeDatetinytextzdbUCSC.utilsutf8vctrsviridisviridisLitevsnwithrxfunXMLxml2xtableXVectoryamlzlibbioc
A transfer learning algorithm for spatial proteomics
Rendered fromv05-pRoloc-transfer-learning.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2023-01-31
Started: 2018-07-07
Annotating spatial proteomics data
Rendered fromv04-pRoloc-goannotations.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2019-04-12
Started: 2018-07-07
Bayesian Analysis of Spatial Proteomics data using pRoloc
Rendered fromv03-pRoloc-bayesian.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2019-04-11
Started: 2018-07-07
Machine learning techniques available in pRoloc
Rendered fromv02-pRoloc-ml.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2019-03-14
Started: 2018-07-07
Using pRoloc for spatial proteomics data analysis
Rendered fromv01-pRoloc-tutorial.Rmd
usingknitr::rmarkdown
on Nov 24 2024.Last update: 2020-03-17
Started: 2018-07-07
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Add GO annotations | addGoAnnotations |
Adds a legend | addLegend |
Adds markers to the data | addMarkers |
Class '"AnnotationParams"' | andy2011params AnnotationParams AnnotationParams-class class:AnnotationParams dunkley2006params getAnnotationParams setAnnotationParams show,AnnotationParams-method |
Check feature names overlap | checkFeatureNamesOverlap |
Compare a feature variable overlap | checkFvarOverlap |
The PCP 'chi square' method | chi2 chi2,matrix,matrix-method chi2,matrix,numeric-method chi2,numeric,matrix-method chi2,numeric,numeric-method chi2-methods |
Calculate class weights | classWeights |
Pairwise Distance Computation for Protein Information Sets | clustDist |
Class '"ClustDist"' | class:ClustDist ClustDist ClustDist-class plot,ClustDist,MSnSet-method show,ClustDist-method |
Storing multiple ClustDist instances | class:ClustDistList ClustDistList ClustDistList-class lapply,ClustDistList-method length,ClustDistList-method names,ClustDistList-method names<-,ClustDistList,ANY-method plot,ClustDistList,missing-method sapply,ClustDistList-method show,ClustDistList-method [,ClustDistList,ANY,ANY,ANY-method [,ClustDistList,ANY,missing,missing-method [[,ClustDistList,ANY,ANY-method [[,ClustDistList,ANY,missing-method |
Estimate empirical p-values for Chi^2 protein correlations. | empPvalues |
Update a feature variable | fDataToUnknown |
Filter a binary MSnSet | filterBinMSnSet |
Removes class/annotation information from a matrix of candidate markers that appear in the 'fData'. | filterMaxMarkers |
Removes class/annotation information from a matrix of candidate markers that appear in the 'fData'. | filterMinMarkers |
Remove 0 columns/rows | filterZeroCols filterZeroRows |
Class '"GenRegRes"' and '"ThetaRegRes"' | class:GenRegRes class:ThetaRegRes combineThetaRegRes f1Count f1Count,GenRegRes-method f1Count,ThetaRegRes-method favourPrimary GenRegRes GenRegRes-class getF1Scores getF1Scores,GenRegRes-method getF1Scores,ThetaRegRes-method getParams getParams,GenRegRes-method getParams,ThetaRegRes-method getRegularisedParams getRegularisedParams,GenRegRes-method getRegularizedParams getRegularizedParams,GenRegRes-method getSeed getSeed,GenRegRes-method getWarnings getWarnings,GenRegRes-method levelPlot levelPlot,GenRegRes-method plot,GenRegRes,missing-method plot,ThetaRegRes,missing-method show,GenRegRes-method show,ThetaRegRes-method ThetaRegRes ThetaRegRes-class |
Retrieve GO terms for feature names | getGOFromFeatures |
Returns the organelle classes in an 'MSnSet' | getMarkerClasses |
Get the organelle markers in an 'MSnSet' | getMarkers |
Extract Distances from a '"ClustDistList"' object | getNormDist |
Returns the predictions in an 'MSnSet' | getPredictions |
Convert GO ids to/from terms | flipGoTermId goIdToTerm goTermToId prettyGoTermId |
Highlight features of interest on a spatial proteomics plot | highlightOnPlot highlightOnPlot3D |
knn classification | knnClassification knnPrediction |
knn parameter optimisation | knnOptimisation knnOptimization knnRegularisation |
knn transfer learning classification | knntlClassification |
theta parameter optimisation | knntlOptimisation |
ksvm classification | ksvmClassification ksvmPrediction |
ksvm parameter optimisation | ksvmOptimisation ksvmOptimization ksvmRegularisation |
Creates a GO feature 'MSnSet' | makeGoSet |
The `logPosteriors` function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence. | class:MAPParams logPosteriors MAPParams MAPParams-class show,MAPParams-method tagmMapPredict tagmMapTrain |
Extract marker/unknown subsets | markerMSnSet unknownMSnSet |
Class '"MartInstance"' | as.data.frame.MartInstance as.data.frame.MartInstanceList filterAttrs getFilterList getMartInstanceList getMartTab lapply,MartInstanceList,ANY-method lapply,MartInstanceList-method MartInstance MartInstance-class MartInstanceList MartInstanceList-class nDatasets sapply,MartInstanceList,ANY-method sapply,MartInstanceList-method show,MartInstance-method [,MartInstanceList,ANY,ANY,ANY-method [,MartInstanceList,ANY,ANY-method [,MartInstanceList-method [[,MartInstanceList,ANY,ANY-method [[,MartInstanceList-method |
Number of outlier at each iteration of MCMC | geweke_test mcmc_burn_chains mcmc_get_meanComponent mcmc_get_meanoutliersProb mcmc_get_outliers mcmc_pool_chains mcmc_thin_chains plot,MCMCParams,character-method |
Instrastructure to store and process MCMC results | .MCMCChain .MCMCChains .MCMCParams .MCMCSummary chains class:MCMCChain class:MCMCChains class:MCMCParams class:MCMCSummary length,MCMCChains-method length,MCMCParams-method MCMCChain MCMCChain-class MCMCChains MCMCChains-class MCMCParams-class MCMCSummary MCMCSummary-class MCMCSummary-class. show,ComponentParam-method show,MCMCChain-method show,MCMCChains-method show,MCMCParams-method [,MCMCChains,ANY,ANY,ANY-method [,MCMCParams,ANY,ANY,ANY-method [[,MCMCChains,ANY,ANY-method [[,MCMCParams,ANY,ANY-method |
Creates a reduced marker variable | minMarkers |
Model calibration plots | mixing_posterior_check |
The 'MLearn' interface for machine learning | MLearn,formula,MSnSet,clusteringSchema,missing-method MLearn,formula,MSnSet,learnerSchema,numeric-method MLearn,formula,MSnSet,learnerSchema,xvalSpec-method MLearnMSnSet MSnSetMLean |
Displays a spatial proteomics animation | move2Ds |
Marker consensus profiles | mrkConsProfiles |
Draw a dendrogram of subcellular clusters | mrkHClust |
Create a marker vector or matrix. | isMrkMat isMrkVec markers mrkEncoding mrkMatAndVec mrkMatToVec mrkVecToMat showMrkMat |
nb classification | nbClassification nbPrediction |
nb paramter optimisation | nbOptimisation nbOptimization nbRegularisation |
Uncertainty plot organelle means | nicheMeans2D |
Nearest neighbour distances | nndist nndist,matrix,matrix-method nndist,matrix,missing-method nndist,MSnSet,missing-method nndist-methods |
nnet classification | nnetClassification nnetPrediction |
nnet parameter optimisation | nnetOptimisation nnetOptimization nnetRegularisation |
Orders annotation information | orderGoAnnotations |
Returns organelle-specific quantile scores | orgQuants |
perTurbo classification | perTurboClassification |
PerTurbo parameter optimisation | perTurboOptimisation perTurboOptimization |
Runs the 'phenoDisco' algorithm. | phenoDisco |
Plot organelle assignment data and results. | plot2D plot2Dmethods plot3D,MSnSet-method |
Draw 2 data sets on one PCA plot | col1 col2 data1 data2 plot2Ds |
Plot marker consenses profiles. | plotConsProfiles |
Plots the distribution of features across fractions | plotDist |
A function to plot probabiltiy ellipses on marker PCA plots to visualise and assess TAGM models. | plotEllipse |
plsda classification | plsdaClassification plsdaPrediction |
plsda parameter optimisation | plsdaOptimisation plsdaOptimization plsdaRegularisation |
Organelle markers | pRolocmarkers |
Quantify resolution of a spatial proteomics experiment | class::QSep levelPlot,QSep-method names,QSep-method names<-,QSep,character-method plot,QSep,missing-method plot,QSep-method QSep qsep QSep-class show,QSep-method summary,QSep-method |
rf classification | rfClassification rfPrediction |
svm parameter optimisation | rfOptimisation rfOptimization rfRegularisation |
Extract a stratified sample of an 'MSnSet' | sampleMSnSet |
Manage default colours and point characters | getLisacol getOldcol getStockcol getStockpch getUnknowncol getUnknownpch setLisacol setOldcol setStockcol setStockpch setUnknowncol setUnknownpch |
GO Evidence Codes | getGOEvidenceCodes showGOEvidenceCodes |
Uncertainty plot in localisation probabilities | spatial2D |
Class 'SpatProtVis' | class:SpatProtVis plot,SpatProtVis,missing-method show,SpatProtVis-method SpatProtVis SpatProtVis-class |
Subsets markers | subsetMarkers |
svm classification | svmClassification svmPrediction |
svm parameter optimisation | svmOptimisation svmOptimization svmRegularisation |
Localisation of proteins using the TAGM MCMC method | tagmMcmcPredict tagmMcmcProcess tagmMcmcTrain tagmPredict |
Tests marker class sizes | testMarkers |
Create a stratified 'test' 'MSnSet' | testMSnSet |
Draw matrix of thetas to test | thetas |
Undocumented/unexported entries | getParams,ClustRegRes-method levelPlot,ClustRegRes-method plot,ClustRegRes,missing-method show,ClustRegRes-method undocumented |
Compute the number of non-zero values in each marker classes | zerosInBinMSnSet |