Package: pRoloc 1.47.1

Laurent Gatto

pRoloc: A unifying bioinformatics framework for spatial proteomics

The pRoloc package implements machine learning and visualisation methods for the analysis and interogation of quantitiative mass spectrometry data to reliably infer protein sub-cellular localisation.

Authors:Laurent Gatto, Oliver Crook and Lisa M. Breckels with contributions from Thomas Burger and Samuel Wieczorek

pRoloc_1.47.1.tar.gz
pRoloc_1.47.1.zip(r-4.5)pRoloc_1.47.1.zip(r-4.4)pRoloc_1.47.1.zip(r-4.3)
pRoloc_1.47.1.tgz(r-4.4-x86_64)pRoloc_1.47.1.tgz(r-4.4-arm64)pRoloc_1.47.1.tgz(r-4.3-x86_64)pRoloc_1.47.1.tgz(r-4.3-arm64)
pRoloc_1.47.1.tar.gz(r-4.5-noble)pRoloc_1.47.1.tar.gz(r-4.4-noble)
pRoloc_1.47.1.tgz(r-4.4-emscripten)pRoloc_1.47.1.tgz(r-4.3-emscripten)
pRoloc.pdf |pRoloc.html
pRoloc/json (API)
NEWS

# Install 'pRoloc' in R:
install.packages('pRoloc', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/lgatto/proloc/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
Datasets:

On BioConductor:pRoloc-1.47.0(bioc 3.21)pRoloc-1.46.0(bioc 3.20)

immunooncologyproteomicsmassspectrometryclassificationclusteringqualitycontrolbioconductorproteomics-dataspatial-proteomicsvisualisation

10.36 score 15 stars 2 packages 100 scripts 471 downloads 12 mentions 151 exports 218 dependencies

Last updated 27 days agofrom:11d5560a31. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 24 2024
R-4.5-win-x86_64NOTENov 24 2024
R-4.5-linux-x86_64NOTENov 24 2024
R-4.4-win-x86_64NOTENov 24 2024
R-4.4-mac-x86_64NOTENov 24 2024
R-4.4-mac-aarch64NOTENov 24 2024
R-4.3-win-x86_64NOTENov 24 2024
R-4.3-mac-x86_64NOTENov 24 2024
R-4.3-mac-aarch64NOTENov 24 2024

Exports:addGoAnnotationsaddLegendaddMarkerschainscheckFeatureNamesOverlapcheckFvarOverlapchi2classWeightsclustDistClustDistListcol1col2combineThetaRegResdata1data2empPvaluesf1CountfavourPrimaryfDataToUnknownfilterBinMSnSetfilterMaxMarkersfilterMinMarkersfilterZeroColsfilterZeroRowsflipGoTermIdgetAnnotationParamsgetF1ScoresgetGOEvidenceCodesgetGOFromFeaturesgetLisacolgetMarkerClassesgetMarkersgetNormDistgetOldcolgetParamsgetPredictionsgetRegularisedParamsgetRegularizedParamsgetSeedgetStockcolgetStockpchgetUnknowncolgetUnknownpchgetWarningsgeweke_testgoIdToTermgoTermToIdhighlightOnPlothighlightOnPlot3DisMrkMatisMrkVecknnClassificationknnOptimisationknnOptimizationknnPredictionknnRegularisationknntlClassificationknntlOptimisationksvmClassificationksvmOptimisationksvmOptimizationksvmPredictionksvmRegularisationlevelPlotlogPosteriorsmakeGoSetmarkerMSnSetmcmc_burn_chainsmcmc_get_meanComponentmcmc_get_meanoutliersProbmcmc_get_outliersmcmc_pool_chainsmcmc_thin_chainsminClassScoreminMarkersMLearnmove2DsmrkConsProfilesmrkHClustmrkMatAndVecmrkMatToVecmrkVecToMatnbClassificationnbOptimisationnbOptimizationnbPredictionnbRegularisationnndistnnetClassificationnnetOptimisationnnetOptimizationnnetPredictionnnetRegularisationorderGoAnnotationsorgQuantsperTurboClassificationperTurboOptimisationperTurboOptimizationphenoDiscoplotplot2Dplot2Dmethodsplot2Dsplot3DplotConsProfilesplotDistplotEllipseplsdaClassificationplsdaOptimisationplsdaOptimizationplsdaPredictionplsdaRegularisationprettyGoTermIdpRolocmarkersqsepQSeprfClassificationrfOptimisationrfOptimizationrfPredictionrfRegularisationsampleMSnSetsetAnnotationParamssetLisacolsetOldcolsetStockcolsetStockpchsetUnknowncolsetUnknownpchshowshowGOEvidenceCodesshowMrkMatspatial2DSpatProtVissubsetMarkerssvmClassificationsvmOptimisationsvmOptimizationsvmPredictionsvmRegularisationtagmMapPredicttagmMapTraintagmMcmcPredicttagmMcmcProcesstagmMcmcTraintagmPredicttestMarkerstestMSnSetthetasunknownMSnSetzerosInBinMSnSet

Dependencies:abindaffyaffyioannotateAnnotationDbiAnnotationFilteraskpassassertthatbase64encBHBiobaseBiocBaseUtilsBiocFileCacheBiocGenericsBiocManagerBiocParallelbiomaRtBiostringsbitbit64blobbslibcachemcaretclasscliclockclueclustercodacodetoolscolorspacecommonmarkcpp11crayoncrosstalkcurldata.tableDBIdbplyrDelayedArraydendextendDEoptimRdiagramdigestdiptestdoParalleldplyre1071evaluatefansifarverfastmapfilelockflexmixFNNfontawesomeforeachformatRfpcfsfutile.loggerfutile.optionsfuturefuture.applygbmgdatagenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggvisglobalsgluegowergridExtragtablegtoolshardhathexbinhighrhmshtmltoolshtmlwidgetshttpuvhttrhttr2hwriterigraphimputeipredIRangesisobanditeratorsjquerylibjsonliteKEGGRESTkernlabKernSmoothknitrlabelinglambda.rLaplacesDemonlaterlatticelavalazyevallifecyclelimmalistenvlpSolvelubridatemagrittrMALDIquantMASSMatrixMatrixGenericsmatrixStatsmclustmemoisemgcvmimemixtoolsmlbenchMLInterfacesModelMetricsmodeltoolsMsCoreUtilsMSnbaseMultiAssayExperimentmunsellmvtnormmzIDmzRncdf4nlmennetnumDerivopensslparallellypcaMethodspillarpkgconfigplogrplotlyplsplyrpngprabcluspreprocessCoreprettyunitspROCprodlimprogressprogressrpromisesProtGenericsproxyPSMatchpurrrQFeaturesR6randomForestrappdirsRColorBrewerRcppRcppArmadillorecipesreshape2Rhdf5librlangrmarkdownrobustbaserpartRSQLiteS4ArraysS4VectorssamplingsassscalessegmentedsfsmiscshapeshinysnowsourcetoolsSparseArraySQUAREMstatmodstringistringrSummarizedExperimentsurvivalsysthreejstibbletidyrtidyselecttimechangetimeDatetinytextzdbUCSC.utilsutf8vctrsviridisviridisLitevsnwithrxfunXMLxml2xtableXVectoryamlzlibbioc

A transfer learning algorithm for spatial proteomics

Rendered fromv05-pRoloc-transfer-learning.Rmdusingknitr::rmarkdownon Nov 24 2024.

Last update: 2023-01-31
Started: 2018-07-07

Annotating spatial proteomics data

Rendered fromv04-pRoloc-goannotations.Rmdusingknitr::rmarkdownon Nov 24 2024.

Last update: 2019-04-12
Started: 2018-07-07

Bayesian Analysis of Spatial Proteomics data using pRoloc

Rendered fromv03-pRoloc-bayesian.Rmdusingknitr::rmarkdownon Nov 24 2024.

Last update: 2019-04-11
Started: 2018-07-07

Machine learning techniques available in pRoloc

Rendered fromv02-pRoloc-ml.Rmdusingknitr::rmarkdownon Nov 24 2024.

Last update: 2019-03-14
Started: 2018-07-07

Using pRoloc for spatial proteomics data analysis

Rendered fromv01-pRoloc-tutorial.Rmdusingknitr::rmarkdownon Nov 24 2024.

Last update: 2020-03-17
Started: 2018-07-07

Readme and manuals

Help Manual

Help pageTopics
Add GO annotationsaddGoAnnotations
Adds a legendaddLegend
Adds markers to the dataaddMarkers
Class '"AnnotationParams"'andy2011params AnnotationParams AnnotationParams-class class:AnnotationParams dunkley2006params getAnnotationParams setAnnotationParams show,AnnotationParams-method
Check feature names overlapcheckFeatureNamesOverlap
Compare a feature variable overlapcheckFvarOverlap
The PCP 'chi square' methodchi2 chi2,matrix,matrix-method chi2,matrix,numeric-method chi2,numeric,matrix-method chi2,numeric,numeric-method chi2-methods
Calculate class weightsclassWeights
Pairwise Distance Computation for Protein Information SetsclustDist
Class '"ClustDist"'class:ClustDist ClustDist ClustDist-class plot,ClustDist,MSnSet-method show,ClustDist-method
Storing multiple ClustDist instancesclass:ClustDistList ClustDistList ClustDistList-class lapply,ClustDistList-method length,ClustDistList-method names,ClustDistList-method names<-,ClustDistList,ANY-method plot,ClustDistList,missing-method sapply,ClustDistList-method show,ClustDistList-method [,ClustDistList,ANY,ANY,ANY-method [,ClustDistList,ANY,missing,missing-method [[,ClustDistList,ANY,ANY-method [[,ClustDistList,ANY,missing-method
Estimate empirical p-values for Chi^2 protein correlations.empPvalues
Update a feature variablefDataToUnknown
Filter a binary MSnSetfilterBinMSnSet
Removes class/annotation information from a matrix of candidate markers that appear in the 'fData'.filterMaxMarkers
Removes class/annotation information from a matrix of candidate markers that appear in the 'fData'.filterMinMarkers
Remove 0 columns/rowsfilterZeroCols filterZeroRows
Class '"GenRegRes"' and '"ThetaRegRes"'class:GenRegRes class:ThetaRegRes combineThetaRegRes f1Count f1Count,GenRegRes-method f1Count,ThetaRegRes-method favourPrimary GenRegRes GenRegRes-class getF1Scores getF1Scores,GenRegRes-method getF1Scores,ThetaRegRes-method getParams getParams,GenRegRes-method getParams,ThetaRegRes-method getRegularisedParams getRegularisedParams,GenRegRes-method getRegularizedParams getRegularizedParams,GenRegRes-method getSeed getSeed,GenRegRes-method getWarnings getWarnings,GenRegRes-method levelPlot levelPlot,GenRegRes-method plot,GenRegRes,missing-method plot,ThetaRegRes,missing-method show,GenRegRes-method show,ThetaRegRes-method ThetaRegRes ThetaRegRes-class
Retrieve GO terms for feature namesgetGOFromFeatures
Returns the organelle classes in an 'MSnSet'getMarkerClasses
Get the organelle markers in an 'MSnSet'getMarkers
Extract Distances from a '"ClustDistList"' objectgetNormDist
Returns the predictions in an 'MSnSet'getPredictions
Convert GO ids to/from termsflipGoTermId goIdToTerm goTermToId prettyGoTermId
Highlight features of interest on a spatial proteomics plothighlightOnPlot highlightOnPlot3D
knn classificationknnClassification knnPrediction
knn parameter optimisationknnOptimisation knnOptimization knnRegularisation
knn transfer learning classificationknntlClassification
theta parameter optimisationknntlOptimisation
ksvm classificationksvmClassification ksvmPrediction
ksvm parameter optimisationksvmOptimisation ksvmOptimization ksvmRegularisation
Creates a GO feature 'MSnSet'makeGoSet
The `logPosteriors` function can be used to extract the log-posteriors at each iteration of the EM algorithm to check for convergence.class:MAPParams logPosteriors MAPParams MAPParams-class show,MAPParams-method tagmMapPredict tagmMapTrain
Extract marker/unknown subsetsmarkerMSnSet unknownMSnSet
Class '"MartInstance"'as.data.frame.MartInstance as.data.frame.MartInstanceList filterAttrs getFilterList getMartInstanceList getMartTab lapply,MartInstanceList,ANY-method lapply,MartInstanceList-method MartInstance MartInstance-class MartInstanceList MartInstanceList-class nDatasets sapply,MartInstanceList,ANY-method sapply,MartInstanceList-method show,MartInstance-method [,MartInstanceList,ANY,ANY,ANY-method [,MartInstanceList,ANY,ANY-method [,MartInstanceList-method [[,MartInstanceList,ANY,ANY-method [[,MartInstanceList-method
Number of outlier at each iteration of MCMCgeweke_test mcmc_burn_chains mcmc_get_meanComponent mcmc_get_meanoutliersProb mcmc_get_outliers mcmc_pool_chains mcmc_thin_chains plot,MCMCParams,character-method
Instrastructure to store and process MCMC results.MCMCChain .MCMCChains .MCMCParams .MCMCSummary chains class:MCMCChain class:MCMCChains class:MCMCParams class:MCMCSummary length,MCMCChains-method length,MCMCParams-method MCMCChain MCMCChain-class MCMCChains MCMCChains-class MCMCParams-class MCMCSummary MCMCSummary-class MCMCSummary-class. show,ComponentParam-method show,MCMCChain-method show,MCMCChains-method show,MCMCParams-method [,MCMCChains,ANY,ANY,ANY-method [,MCMCParams,ANY,ANY,ANY-method [[,MCMCChains,ANY,ANY-method [[,MCMCParams,ANY,ANY-method
Creates a reduced marker variableminMarkers
Model calibration plotsmixing_posterior_check
The 'MLearn' interface for machine learningMLearn,formula,MSnSet,clusteringSchema,missing-method MLearn,formula,MSnSet,learnerSchema,numeric-method MLearn,formula,MSnSet,learnerSchema,xvalSpec-method MLearnMSnSet MSnSetMLean
Displays a spatial proteomics animationmove2Ds
Marker consensus profilesmrkConsProfiles
Draw a dendrogram of subcellular clustersmrkHClust
Create a marker vector or matrix.isMrkMat isMrkVec markers mrkEncoding mrkMatAndVec mrkMatToVec mrkVecToMat showMrkMat
nb classificationnbClassification nbPrediction
nb paramter optimisationnbOptimisation nbOptimization nbRegularisation
Uncertainty plot organelle meansnicheMeans2D
Nearest neighbour distancesnndist nndist,matrix,matrix-method nndist,matrix,missing-method nndist,MSnSet,missing-method nndist-methods
nnet classificationnnetClassification nnetPrediction
nnet parameter optimisationnnetOptimisation nnetOptimization nnetRegularisation
Orders annotation informationorderGoAnnotations
Returns organelle-specific quantile scoresorgQuants
perTurbo classificationperTurboClassification
PerTurbo parameter optimisationperTurboOptimisation perTurboOptimization
Runs the 'phenoDisco' algorithm.phenoDisco
Plot organelle assignment data and results.plot2D plot2Dmethods plot3D,MSnSet-method
Draw 2 data sets on one PCA plotcol1 col2 data1 data2 plot2Ds
Plot marker consenses profiles.plotConsProfiles
Plots the distribution of features across fractionsplotDist
A function to plot probabiltiy ellipses on marker PCA plots to visualise and assess TAGM models.plotEllipse
plsda classificationplsdaClassification plsdaPrediction
plsda parameter optimisationplsdaOptimisation plsdaOptimization plsdaRegularisation
Organelle markerspRolocmarkers
Quantify resolution of a spatial proteomics experimentclass::QSep levelPlot,QSep-method names,QSep-method names<-,QSep,character-method plot,QSep,missing-method plot,QSep-method QSep qsep QSep-class show,QSep-method summary,QSep-method
rf classificationrfClassification rfPrediction
svm parameter optimisationrfOptimisation rfOptimization rfRegularisation
Extract a stratified sample of an 'MSnSet'sampleMSnSet
Manage default colours and point charactersgetLisacol getOldcol getStockcol getStockpch getUnknowncol getUnknownpch setLisacol setOldcol setStockcol setStockpch setUnknowncol setUnknownpch
GO Evidence CodesgetGOEvidenceCodes showGOEvidenceCodes
Uncertainty plot in localisation probabilitiesspatial2D
Class 'SpatProtVis'class:SpatProtVis plot,SpatProtVis,missing-method show,SpatProtVis-method SpatProtVis SpatProtVis-class
Subsets markerssubsetMarkers
svm classificationsvmClassification svmPrediction
svm parameter optimisationsvmOptimisation svmOptimization svmRegularisation
Localisation of proteins using the TAGM MCMC methodtagmMcmcPredict tagmMcmcProcess tagmMcmcTrain tagmPredict
Tests marker class sizestestMarkers
Create a stratified 'test' 'MSnSet'testMSnSet
Draw matrix of thetas to testthetas
Undocumented/unexported entriesgetParams,ClustRegRes-method levelPlot,ClustRegRes-method plot,ClustRegRes,missing-method show,ClustRegRes-method undocumented
Compute the number of non-zero values in each marker classeszerosInBinMSnSet