Package: multtest 2.63.0
multtest: Resampling-based multiple hypothesis testing
Non-parametric bootstrap and permutation resampling-based multiple testing procedures (including empirical Bayes methods) for controlling the family-wise error rate (FWER), generalized family-wise error rate (gFWER), tail probability of the proportion of false positives (TPPFP), and false discovery rate (FDR). Several choices of bootstrap-based null distribution are implemented (centered, centered and scaled, quantile-transformed). Single-step and step-wise methods are available. Tests based on a variety of t- and F-statistics (including t-statistics based on regression parameters from linear and survival models as well as those based on correlation parameters) are included. When probing hypotheses with t-statistics, users may also select a potentially faster null distribution which is multivariate normal with mean zero and variance covariance matrix derived from the vector influence function. Results are reported in terms of adjusted p-values, confidence regions and test statistic cutoffs. The procedures are directly applicable to identifying differentially expressed genes in DNA microarray experiments.
Authors:
multtest_2.63.0.tar.gz
multtest_2.63.0.zip(r-4.5)multtest_2.63.0.zip(r-4.4)multtest_2.63.0.zip(r-4.3)
multtest_2.63.0.tgz(r-4.4-x86_64)multtest_2.63.0.tgz(r-4.4-arm64)multtest_2.63.0.tgz(r-4.3-x86_64)multtest_2.63.0.tgz(r-4.3-arm64)
multtest_2.63.0.tar.gz(r-4.5-noble)multtest_2.63.0.tar.gz(r-4.4-noble)
multtest_2.63.0.tgz(r-4.4-emscripten)multtest_2.63.0.tgz(r-4.3-emscripten)
multtest.pdf |multtest.html✨
multtest/json (API)
# Install 'multtest' in R: |
install.packages('multtest', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- golub - Gene expression dataset from Golub et al.
- golub.cl - Gene expression dataset from Golub et al.
- golub.gnames - Gene expression dataset from Golub et al.
On BioConductor:multtest-2.63.0(bioc 3.21)multtest-2.62.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
microarraydifferentialexpressionmultiplecomparison
Last updated 2 months agofrom:baeb8623e2. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 29 2024 |
R-4.5-win-x86_64 | WARNING | Nov 29 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 29 2024 |
R-4.4-win-x86_64 | WARNING | Nov 29 2024 |
R-4.4-mac-x86_64 | WARNING | Nov 29 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 29 2024 |
R-4.3-win-x86_64 | WARNING | Nov 29 2024 |
R-4.3-mac-x86_64 | WARNING | Nov 29 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 29 2024 |
Exports:ABH.h0as.listblockFXboot.nullboot.resamplecenter.onlycenter.scalecorr.nullcorr.TncoxYdens.estdiffmeanXdiffs.1.NEBMTPebmtp2mtpEBupdatefwer2fdrfwer2gfwerfwer2tppfpFXG.VSget.indexget.TnHsetsIC.Cor.NAIC.CorXW.NAinsert.NAlmXlmYmarg.sampmeanXmt.maxTmt.minPmt.plotmt.rawp2adjpmt.rejectmt.sample.labelmt.sample.rawpmt.sample.teststatmt.teststatmt.teststat.num.denumMTPmtp2ebmtpplotquant.transsd.maxTsd.minPss.maxTss.minPsummarytQuantTranstwowayFXupdateVScountwapply
Dependencies:BiobaseBiocGenericsgenericslatticeMASSMatrixsurvival