Package: msqrob2 1.15.0

Lieven Clement

msqrob2: Robust statistical inference for quantitative LC-MS proteomics

msqrob2 provides a robust linear mixed model framework for assessing differential abundance in MS-based Quantitative proteomics experiments. Our workflows can start from raw peptide intensities or summarised protein expression values. The model parameter estimates can be stabilized by ridge regression, empirical Bayes variance estimation and robust M-estimation. msqrob2's hurde workflow can handle missing data without having to rely on hard-to-verify imputation assumptions, and, outcompetes state-of-the-art methods with and without imputation for both high and low missingness. It builds on QFeature infrastructure for quantitative mass spectrometry data to store the model results together with the raw data and preprocessed data.

Authors:Lieven Clement [aut, cre], Laurent Gatto [aut], Oliver M. Crook [aut], Adriaan Sticker [ctb], Ludger Goeminne [ctb], Milan Malfait [ctb], Stijn Vandenbulcke [aut]

msqrob2_1.15.0.tar.gz
msqrob2_1.15.0.zip(r-4.5)msqrob2_1.15.0.zip(r-4.4)msqrob2_1.15.0.zip(r-4.3)
msqrob2_1.15.0.tgz(r-4.4-any)msqrob2_1.15.0.tgz(r-4.3-any)
msqrob2_1.15.0.tar.gz(r-4.5-noble)msqrob2_1.15.0.tar.gz(r-4.4-noble)
msqrob2_1.15.0.tgz(r-4.4-emscripten)msqrob2_1.15.0.tgz(r-4.3-emscripten)
msqrob2.pdf |msqrob2.html
msqrob2/json (API)
NEWS

# Install 'msqrob2' in R:
install.packages('msqrob2', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/statomics/msqrob2/issues

Datasets:
  • pe - Example data for 100 proteins

On BioConductor:msqrob2-1.15.0(bioc 3.21)msqrob2-1.14.0(bioc 3.20)

proteomicsmassspectrometrydifferentialexpressionmultiplecomparisonregressionexperimentaldesignsoftwareimmunooncologynormalizationtimecoursepreprocessing

7.08 score 10 stars 85 scripts 300 downloads 27 exports 113 dependencies

Last updated 3 days agofrom:11223d2175. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 21 2024
R-4.5-winNOTENov 29 2024
R-4.5-linuxNOTEDec 21 2024
R-4.4-winNOTENov 29 2024
R-4.4-macNOTEDec 21 2024
R-4.3-winNOTENov 29 2024
R-4.3-macNOTEDec 21 2024

Exports:.StatModelgetCoefgetContrastgetDFgetDfPosteriorgetFitMethodgetModelgetSigmagetSigmaPosteriorgetVargetVarPosteriorgetVcovUnscaledhypothesisTesthypothesisTestHurdlemakeContrastmsqrobmsqrobAggregatemsqrobGlmmsqrobHurdlemsqrobLmmsqrobLmermsqrobQBshowsmallestUniqueGroupsStatModeltopFeaturesvarContrast

Dependencies:abindAnnotationFilteraskpassbase64encBHBiobaseBiocBaseUtilsBiocGenericsBiocParallelbootbslibcachemcliclueclustercodetoolscolorspacecpp11crayoncrosstalkcurldata.tableDelayedArraydigestdplyrevaluatefansifarverfastmapfontawesomeformatRfsfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtablehighrhtmltoolshtmlwidgetshttrigraphIRangesisobandjquerylibjsonliteknitrlabelinglambda.rlaterlatticelazyevallifecyclelimmalme4magrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimeminqaMsCoreUtilsMultiAssayExperimentmunsellnlmenloptropensslpillarpkgconfigplotlyplyrpromisesProtGenericspurrrQFeaturesR6rappdirsRColorBrewerRcppRcppEigenreshape2rlangrmarkdownS4ArraysS4VectorssassscalessnowSparseArraystatmodstringistringrSummarizedExperimentsystibbletidyrtidyselecttinytexUCSC.utilsutf8vctrsviridisLitewithrxfunXVectoryaml

Introduction to proteomics data analysis

Rendered fromcptac.Rmdusingknitr::rmarkdownon Dec 21 2024.

Last update: 2024-04-22
Started: 2019-12-12

Readme and manuals

Help Manual

Help pageTopics
Methods for StatModel classgetContrast getContrast,StatModel-method StatModel-method statModelMethods varContrast varContrast,StatModel-method
Accessor functions for StatModel classgetCoef getCoef,StatModel-method getDF getDF,StatModel-method getDfPosterior getDfPosterior,StatModel-method getFitMethod getFitMethod,StatModel-method getModel getModel,StatModel-method getSigma getSigma,StatModel-method getSigmaPosterior getSigmaPosterior,StatModel-method getVar getVar,StatModel-method getVarPosterior getVarPosterior,StatModel-method getVcovUnscaled getVcovUnscaled,StatModel-method statModelAccessors
Parameter estimates, standard errors and statistical inference on differential expression analysishypothesisTest hypothesisTest,QFeatures-method hypothesisTest,SummarizedExperiment-method hypothesisTestHurdle hypothesisTestHurdle,QFeatures-method hypothesisTestHurdle,SummarizedExperiment-method
Make contrast matrixmakeContrast
Methods to fit msqrob models with ridge regression and/or random effects using lme4msqrob msqrob,QFeatures-method msqrob,SummarizedExperiment-method
Method to fit msqrob models with robust regression and/or ridge regression and/or random effects It models multiple features simultaneously, e.g. multiple peptides from the same protein.msqrobAggregate msqrobAggregate,QFeatures-method msqrobAggregate,SummarizedExperiment-method
Function to fit msqrob models to peptide counts using glmmsqrobGlm
Function to fit msqrob hurdle modelsmsqrobHurdle msqrobHurdle,QFeatures-method msqrobHurdle,SummarizedExperiment-method
Function to fit msqrob models using lm and rlmmsqrobLm
Function to fit msqrob models with ridge regression and/or random effects using lme4msqrobLmer
Function to fit msqrob models to peptide counts using glmmsqrobQB msqrobQB,QFeatures-method msqrobQB,SummarizedExperiment-method
Example data for 100 proteinsdata pe
Smallest unique protein groupssmallestUniqueGroups
The StatModel class for msqrob.StatModel show,StatModel-method StatModel StatModel-class
Toplist of DE proteins, peptides or featurestopFeatures