Package: metagenomeSeq 1.49.0

Joseph N. Paulson

metagenomeSeq: Statistical analysis for sparse high-throughput sequencing

metagenomeSeq is designed to determine features (be it Operational Taxanomic Unit (OTU), species, etc.) that are differentially abundant between two or more groups of multiple samples. metagenomeSeq is designed to address the effects of both normalization and under-sampling of microbial communities on disease association detection and the testing of feature correlations.

Authors:Joseph Nathaniel Paulson, Nathan D. Olson, Domenick J. Braccia, Justin Wagner, Hisham Talukder, Mihai Pop, Hector Corrada Bravo

metagenomeSeq_1.49.0.tar.gz
metagenomeSeq_1.49.0.zip(r-4.5)metagenomeSeq_1.49.0.zip(r-4.4)metagenomeSeq_1.49.0.zip(r-4.3)
metagenomeSeq_1.49.0.tgz(r-4.4-any)metagenomeSeq_1.49.0.tgz(r-4.3-any)
metagenomeSeq_1.49.0.tar.gz(r-4.5-noble)metagenomeSeq_1.49.0.tar.gz(r-4.4-noble)
metagenomeSeq_1.49.0.tgz(r-4.4-emscripten)metagenomeSeq_1.49.0.tgz(r-4.3-emscripten)
metagenomeSeq.pdf |metagenomeSeq.html
metagenomeSeq/json (API)
NEWS

# Install 'metagenomeSeq' in R:
install.packages('metagenomeSeq', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nosson/metagenomeseq/issues

Datasets:
  • lungData - OTU abundance matrix of samples from a smoker/non-smoker study
  • mouseData - OTU abundance matrix of mice samples from a diet longitudinal study

On BioConductor:metagenomeSeq-1.49.0(bioc 3.21)metagenomeSeq-1.47.0(bioc 3.20)

immunooncologyclassificationclusteringgeneticvariabilitydifferentialexpressionmicrobiomemetagenomicsnormalizationvisualizationmultiplecomparisonsequencingsoftware

11.80 score 66 stars 8 packages 478 scripts 2.5k downloads 169 mentions 68 exports 24 dependencies

Last updated 23 days agofrom:e8b5b4647b. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-winERRORNov 07 2024
R-4.5-linuxERRORNov 07 2024
R-4.4-winERRORNov 07 2024
R-4.4-macERRORNov 07 2024
R-4.3-winERRORNov 07 2024
R-4.3-macERRORNov 07 2024

Exports:aggregateBySampleaggregateByTaxonomyaggSampaggTaxbiom2MRexperimentcalcNormFactorscalculateEffectiveSamplescorrectIndicescorrelationTestcumNormcumNormMatcumNormStatcumNormStatFastexportMatexportStatsexpSummaryfilterDatafitDOfitFeatureModelfitLogNormalfitMetafitMultipleTimeSeriesfitPAfitSSTimeSeriesfitTimeSeriesfitZiglibSizelibSize<-load_biomload_metaload_metaQload_phenoDataloadBiomloadMetaloadMetaQloadPhenoDatamakeLabelsmergeMRexperimentsMRcoefsMRcountsMRexperiment2biomMRfulltableMRihwMRtablenewMRexperimentnormFactorsnormFactors<-plotBubbleplotClassTimeSeriesplotCorrplotFeatureplotGenusplotMRheatmapplotOrdplotOTUplotRareplotTimeSeriesposteriorProbsreturnAppropriateObjssFitssIntervalCandidatessPermssPermAnalysistrapzts2MRexperimentuniqueFeatureswrenchNormzigControl

Dependencies:BiobaseBiocGenericsbitopscaToolscodetoolsforeachgenericsglmnetgplotsgtoolsiteratorsKernSmoothlatticelimmalocfitMatrixmatrixStatsRColorBrewerRcppRcppEigenshapestatmodsurvivalWrench

fitTimeSeries: differential abundance analysis through time or location

Rendered fromfitTimeSeries.Rnwusingknitr::knitron Nov 07 2024.

Last update: 2020-03-17
Started: 2014-11-13

metagenomeSeq: statistical analysis for sparse high-throughput sequencing

Rendered frommetagenomeSeq.Rnwusingknitr::knitron Nov 07 2024.

Last update: 2024-03-12
Started: 2013-03-25

Readme and manuals

Help Manual

Help pageTopics
Statistical analysis for sparse high-throughput sequencingmetagenomeSeq-package metagenomeSeq
Aggregates a MRexperiment object or counts matrix to by a factor.aggregateBySample aggSamp
Aggregates a MRexperiment object or counts matrix to a particular level.aggregateByTaxonomy aggTax
Biom to MRexperiment objectsbiom2MRexperiment
Cumulative sum scaling (css) normalization factorscalcNormFactors
Positive componentcalcPosComponent
Calculate shrinkage parameterscalcShrinkParameters
Calculate the zero-inflated log-normal statistic's standard errorcalcStandardError
Estimated effective samples per featurecalculateEffectiveSamples
Calculate the zero-inflated component's adjustment factorcalcZeroAdjustment
Zero componentcalcZeroComponent
Calculate the correct indices for the output of correlationTestcorrectIndices
Correlation of each row of a matrix or MRexperiment objectcorrelationTest corTest
Cumulative sum scaling normalizationcumNorm
Cumulative sum scaling factors.cumNormMat
Cumulative sum scaling percentile selectioncumNormStat
Cumulative sum scaling percentile selectioncumNormStatFast
Compute the Maximization step calculation for features still active.doCountMStep
Compute the Expectation step.doEStep
Compute the zero Maximization step.doZeroMStep
Export the normalized MRexperiment dataset as a matrix.exportMat exportMatrix
Various statistics of the count data.exportStats
Access MRexperiment object experiment dataexpSummary expSummary,MRexperiment-method
Extract the essentials of an MRexperiment.extractMR
Filter datasets according to no. features present in features with at least a certain depth.filterData
Wrapper to calculate Discovery Odds Ratios on feature values.fitDO
Computes differential abundance analysis using a zero-inflated log-normal modelfitFeatureModel
Class "fitFeatureModelResults" - a formal class for storing results from a fitFeatureModel callfitFeatureModelResults-class
Computes a log-normal linear model and permutation based p-values.fitLogNormal
Discover differentially abundant time intervals for all bacteriafitMultipleTimeSeries
Wrapper to run fisher's test on presence/absence of a feature.fitPA
Discover differentially abundant time intervals using SS-AnovafitSSTimeSeries
Discover differentially abundant time intervalsfitTimeSeries
Compute the log fold-change estimates for the zero-inflated log-normal modelfitZeroLogNormal
Computes the weighted fold-change estimates and t-statistics.fitZig
Class "fitZigResults" - a formal class for storing results from a fitZig callfitZigResults-class
Compute the value of the count density function from the count model residuals.getCountDensity
Calculate the relative difference between iterations of the negative log-likelihoods.getEpsilon
Calculate the negative log-likelihoods for the various features given the residuals.getNegativeLogLikelihoods
Calculate the mixture proportions from the zero model / spike mass model residuals.getPi
Calculate the current Z estimate responsibilities (posterior probabilities)getZ
Function to determine if a feature is still active.isItStillActive
Access sample depth of coverage from MRexperiment objectlibSize
Replace the library sizes in a MRexperiment objectlibSize<- libSize<-,MRexperiment,numeric-method
Load objects organized in the Biom format.loadBiom
Load a count dataset associated with a study.loadMeta metagenomicLoader
Load a count dataset associated with a study set up in a Qiime format.loadMetaQ qiimeLoader
Load a clinical/phenotypic dataset associated with a study.loadPhenoData phenoData
OTU abundance matrix of samples from a smoker/non-smoker studylungData
Function to make labels simplermakeLabels
Merge two MRexperiment objects togethermergeMRexperiments
Merge two tablesmergeTable
Depcrecated functions in the metagenomeSeq package.deprecated_metagenomeSeq_function fitMeta load_biom load_meta load_metaQ load_phenoData metagenomeSeq-deprecated
OTU abundance matrix of mice samples from a diet longitudinal studymouseData
Table of top-ranked features from fitZig or fitFeatureModelMRcoefs
Accessor for the counts slot of a MRexperiment objectMRcounts MRcounts,MRexperiment-method
Class "MRexperiment" - a modified eSet object for the data from high-throughput sequencing experimentscolMeans,MRexperiment-method colSums,MRexperiment-method libSize,MRexperiment-method MRexperiment-class normFactors,MRexperiment-method rowMeans,MRexperiment-method rowSums,MRexperiment-method [,MRexperiment,ANY,ANY,ANY-method [,MRexperiment-method
MRexperiment to biom objectsMRexperiment2biom
Table of top microbial marker gene from linear model fit including sequence informationMRfulltable
MRihw runs IHW within a MRcoefs() callMRihw
MRihw runs IHW within a MRcoefs() callMRihw,fitFeatureModelResults-method
MRihw runs IHW within a MRcoefs() callMRihw,fitZigResults-method
Table of top microbial marker gene from linear model fit including sequence informationMRtable
Create a MRexperiment objectnewMRexperiment
Access the normalization factors in a MRexperiment objectnormFactors
Replace the normalization factors in a MRexperiment objectnormFactors<- normFactors<-,MRexperiment,numeric-method
Basic plot of binned vectors.plotBubble
Plot abundances by classplotClassTimeSeries
Basic correlation plot function for normalized or unnormalized counts.plotCorr
Basic plot function of the raw or normalized data.plotFeature
Basic plot function of the raw or normalized data.genusPlot plotGenus
Basic heatmap plot function for normalized counts.plotMRheatmap
Plot of either PCA or MDS coordinates for the distances of normalized or unnormalized counts.plotOrd
Basic plot function of the raw or normalized data.plotOTU
Plot of rarefaction effectplotRare
Plot difference function for particular bacteriaplotTimeSeries
Access the posterior probabilities that results from analysisposteriorProbs posteriorProbs,MRexperiment-method
Check if MRexperiment or matrix and return matrixreturnAppropriateObj
smoothing-splines anova fitssFit
calculate interesting time intervalsssIntervalCandidate
class permutations for smoothing-spline time series analysisssPerm
smoothing-splines anova fits for each permutationssPermAnalysis
Trapezoidal Integrationtrapz
With a list of fitTimeSeries results, generate an MRexperiment that can be plotted with metavizrts2MRexperiment
Table of features unique to a groupuniqueFeatures
Computes normalization factors using wrench instead of cumNormwrenchNorm
Settings for the fitZig functionsettings2 zigControl