Package: mbkmeans 1.23.0

Davide Risso

mbkmeans: Mini-batch K-means Clustering for Single-Cell RNA-seq

Implements the mini-batch k-means algorithm for large datasets, including support for on-disk data representation.

Authors:Yuwei Ni [aut, cph], Davide Risso [aut, cre, cph], Stephanie Hicks [aut, cph], Elizabeth Purdom [aut, cph]

mbkmeans_1.23.0.tar.gz
mbkmeans_1.23.0.zip(r-4.5)mbkmeans_1.23.0.zip(r-4.4)mbkmeans_1.23.0.zip(r-4.3)
mbkmeans_1.23.0.tgz(r-4.4-x86_64)mbkmeans_1.23.0.tgz(r-4.4-arm64)mbkmeans_1.23.0.tgz(r-4.3-x86_64)mbkmeans_1.23.0.tgz(r-4.3-arm64)
mbkmeans_1.23.0.tar.gz(r-4.5-noble)mbkmeans_1.23.0.tar.gz(r-4.4-noble)
mbkmeans.pdf |mbkmeans.html
mbkmeans/json (API)
NEWS

# Install 'mbkmeans' in R:
install.packages('mbkmeans', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/drisso/mbkmeans/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On BioConductor:mbkmeans-1.21.0(bioc 3.20)mbkmeans-1.20.0(bioc 3.19)

clusteringgeneexpressionrnaseqsoftwaretranscriptomicssequencingsinglecellhuman-cell-atlas

7.37 score 9 stars 2 packages 54 scripts 804 downloads 2 mentions 7 exports 80 dependencies

Last updated 24 days agofrom:446bb72750. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-win-x86_64NOTEOct 31 2024
R-4.5-linux-x86_64NOTEOct 30 2024
R-4.4-win-x86_64NOTEOct 31 2024
R-4.4-mac-x86_64NOTEOct 31 2024
R-4.4-mac-aarch64NOTEOct 31 2024
R-4.3-win-x86_64NOTEOct 31 2024
R-4.3-mac-x86_64NOTEOct 31 2024
R-4.3-mac-aarch64NOTEOct 31 2024

Exports:blocksizecompute_wcssmbkmeansMbkmeansParammini_batchpredict_mini_batchpredict_mini_batch_r

Dependencies:abindaskpassassortheadbeachmatbenchmarkmebenchmarkmeDataBHBiobaseBiocGenericsBiocParallelcliClusterRcodetoolscolorspacecpp11crayoncurlDelayedArraydoParalleldplyrfansifarverforeachformatRfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegmpgtablehttrIRangesisobanditeratorsjsonlitelabelinglambda.rlatticelifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimemunsellnlmeopensslpillarpkgconfigR6RColorBrewerRcppRcppArmadilloRhdf5librlangS4ArraysS4VectorsscalesSingleCellExperimentsnowSparseArraystringistringrSummarizedExperimentsystibbletidyselectUCSC.utilsutf8vctrsviridisLitewithrXVectorzlibbioc

An introduction to mbkmeans

Rendered fromVignette.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2021-01-19
Started: 2018-11-06

Readme and manuals

Help Manual

Help pageTopics
blocksizeblocksize
Cluster rows of a matrixclusterRows
Compute Whithin-Cluster Sum of Squarescompute_wcss
Mini-Batch k-means for large single cell sequencing datambkmeans mbkmeans,ANY-method mbkmeans,LinearEmbeddingMatrix-method mbkmeans,SingleCellExperiment-method mbkmeans,SummarizedExperiment-method
Mini-batch k-means clusteringMbkmeansParam show,MbkmeansParam-method
Mini_batchmini_batch
Predict_mini_batchpredict_mini_batch
Compute labels for mini-batch k-meanspredict_mini_batch_r