Package: iterativeBMA 1.65.0
Ka Yee Yeung
iterativeBMA: The Iterative Bayesian Model Averaging (BMA) algorithm
The iterative Bayesian Model Averaging (BMA) algorithm is a variable selection and classification algorithm with an application of classifying 2-class microarray samples, as described in Yeung, Bumgarner and Raftery (Bioinformatics 2005, 21: 2394-2402).
Authors:
iterativeBMA_1.65.0.tar.gz
iterativeBMA_1.65.0.zip(r-4.5)iterativeBMA_1.65.0.zip(r-4.4)iterativeBMA_1.65.0.zip(r-4.3)
iterativeBMA_1.65.0.tgz(r-4.4-any)iterativeBMA_1.65.0.tgz(r-4.3-any)
iterativeBMA_1.65.0.tar.gz(r-4.5-noble)iterativeBMA_1.65.0.tar.gz(r-4.4-noble)
iterativeBMA_1.65.0.tgz(r-4.4-emscripten)iterativeBMA_1.65.0.tgz(r-4.3-emscripten)
iterativeBMA.pdf |iterativeBMA.html✨
iterativeBMA/json (API)
# Install 'iterativeBMA' in R: |
install.packages('iterativeBMA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- testClass - Sample Test Data for the Iterative BMA Algorithm
- testData - Sample Test Data for the Iterative BMA Algorithm
- trainClass - Sample Training Data for the Iterative BMA Algorithm
- trainData - Sample Training Data for the Iterative BMA Algorithm
On BioConductor:iterativeBMA-1.65.0(bioc 3.21)iterativeBMA-1.64.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 months agofrom:00a6f3f4f5. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 27 2024 |
R-4.5-win | NOTE | Nov 27 2024 |
R-4.5-linux | NOTE | Nov 27 2024 |
R-4.4-win | NOTE | Nov 27 2024 |
R-4.4-mac | NOTE | Nov 27 2024 |
R-4.3-win | NOTE | Nov 27 2024 |
R-4.3-mac | NOTE | Nov 27 2024 |
Exports:bma.predictbrier.scoreBssWssFastimageplot.iterate.bmaiterateBMAglm.trainiterateBMAglm.train.predictiterateBMAglm.train.predict.testiterateBMAglm.wrapper
Dependencies:BiobaseBiocGenericsBMADEoptimRgenericsinlinelatticeleapsMatrixmvtnormpcaPProbustbaserrcovsurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
The Iterative Bayesian Model Averaging (BMA) algorithm | iterativeBMA-package iterativeBMA |
Predicted Probabilities from Bayesian Model Averaging | bma.predict |
Brier Score: assessment of prediction accuracy | brier.score |
Between-groups sum-of-squares to within-groups sum-of-squares ratio | BssWssFast |
An image plot visualization tool | imageplot.iterate.bma |
Iterative Bayesian Model Averaging: training step | iterateBMAglm.train |
Iterative Bayesian Model Averaging: training and prediction | iterateBMAglm.train.predict |
Iterative Bayesian Model Averaging: training, prediction and testing | iterateBMAglm.train.predict.test |
Iterative Bayesian Model Averaging | iterateBMAglm.wrapper |
Sample Test Data for the Iterative BMA Algorithm | testClass |
Sample Test Data for the Iterative BMA Algorithm | testData |
Sample Training Data for the Iterative BMA Algorithm | trainClass |
Sample Training Data for the Iterative BMA Algorithm | trainData |