Package: dce 1.15.0
dce: Pathway Enrichment Based on Differential Causal Effects
Compute differential causal effects (dce) on (biological) networks. Given observational samples from a control experiment and non-control (e.g., cancer) for two genes A and B, we can compute differential causal effects with a (generalized) linear regression. If the causal effect of gene A on gene B in the control samples is different from the causal effect in the non-control samples the dce will differ from zero. We regularize the dce computation by the inclusion of prior network information from pathway databases such as KEGG.
Authors:
dce_1.15.0.tar.gz
dce_1.15.0.zip(r-4.5)dce_1.15.0.zip(r-4.4)dce_1.15.0.zip(r-4.3)
dce_1.15.0.tgz(r-4.4-any)dce_1.15.0.tgz(r-4.3-any)
dce_1.15.0.tar.gz(r-4.5-noble)dce_1.15.0.tar.gz(r-4.4-noble)
dce_1.15.0.tgz(r-4.4-emscripten)dce_1.15.0.tgz(r-4.3-emscripten)
dce.pdf |dce.html✨
dce/json (API)
NEWS
# Install 'dce' in R: |
install.packages('dce', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cbg-ethz/dce/issues
- df_pathway_statistics - Biological pathway information.
On BioConductor:dce-1.13.0(bioc 3.21)dce-1.13.0(bioc 3.20)
softwarestatisticalmethodgraphandnetworkregressiongeneexpressiondifferentialexpressionnetworkenrichmentnetworkkeggbioconductorcausality
Last updated 25 days agofrom:ba5ee3f6bc. Checks:ERROR: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | FAIL | Oct 31 2024 |
R-4.5-win | WARNING | Oct 31 2024 |
R-4.5-linux | WARNING | Oct 31 2024 |
R-4.4-win | WARNING | Oct 31 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
R-4.3-win | WARNING | Oct 31 2024 |
R-4.3-mac | WARNING | Oct 31 2024 |
Exports:as_adjmatcreate_random_DAGdcedce_nbestimate_latent_countg2dagget_pathway_infoget_pathwaysget_prediction_countsgraph_uniongraph2dfpcorpermutation_testplot_networkpropagate_gene_edgesresample_edge_weightssimulate_datatopologically_orderingtrueEffects
Dependencies:abindamapAnnotationDbiapclusteraskpassassertthatbackportsbase64encbdsmatrixBHBiobaseBiocGenericsBiocManagerBiostringsbitbit64blobBoolNetBoutrosLab.plotting.generalbroombslibcachemcallrcellrangerclassclicliprclueclustercodetoolscolorspaceconflictedcorpcorcpp11crayoncurldata.tableDBIdbplyrdeldirDEoptimRdigestdiptestdplyrdtplyre1071edgeRellipseepiNEMevaluateexpmfansifarverfastclusterfastICAfastmapflexclustflexmixFMStablefontawesomeforcatsfpcfsgarglegdatagenericsGenomeInfoDbGenomeInfoDbDataggdendroggforceggmggplot2ggraphggrepelglm2gluegmodelsgoogledrivegooglesheets4graphgraphitegraphlayoutsgridExtragtablegtoolsharmonicmeanphavenhexbinhighrhmshtmltoolshttridsigraphinfotheointerpIRangesisobandjpegjquerylibjsonliteKEGGRESTkernlabknitrlabelinglatex2explatticelatticeExtralifecyclelimmaLinnormlmtestlocfitloggerlubridatemagrittrMASSmathjaxrMatrixMatrixModelsmatrixStatsmclustmemoisemetapmgcvmimeminetmnemmnormtmodelrmodeltoolsmultcompmulttestmunsellmutossmvtnormnaturalsortnlmennetnumDerivopensslorg.Hs.eg.dbpcalgpermutepillarpkgconfigplogrplotrixplyrpngpolyclipppcorprabclusprettyunitsprocessxprogressproxypspurrrqqconfquantregR6raggrappdirsRBGLrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackreadrreadxlrematchrematch2reprexreshape2RgraphvizrlangrmarkdownrobustbaseRSQLiterstudioapiRtsnervestS4VectorssandwichsassscalesselectrsfsmiscshadowtextsnsnowsnowfallSparseMstatmodstringistringrsurvivalsyssystemfontstextshapingTFisherTH.datatibbletidygraphtidyrtidyselecttidyversetimechangetinytextsnetweenrtzdbUCSC.utilsutf8uuidvcdvctrsveganviridisviridisLitevroomwesandersonwithrxfunXMLxml2XVectoryamlzlibbioczoo