Package: cytomapper 1.19.0
Lasse Meyer
cytomapper: Visualization of highly multiplexed imaging data in R
Highly multiplexed imaging acquires the single-cell expression of selected proteins in a spatially-resolved fashion. These measurements can be visualised across multiple length-scales. First, pixel-level intensities represent the spatial distributions of feature expression with highest resolution. Second, after segmentation, expression values or cell-level metadata (e.g. cell-type information) can be visualised on segmented cell areas. This package contains functions for the visualisation of multiplexed read-outs and cell-level information obtained by multiplexed imaging technologies. The main functions of this package allow 1. the visualisation of pixel-level information across multiple channels, 2. the display of cell-level information (expression and/or metadata) on segmentation masks and 3. gating and visualisation of single cells.
Authors:
cytomapper_1.19.0.tar.gz
cytomapper_1.19.0.zip(r-4.5)cytomapper_1.19.0.zip(r-4.4)cytomapper_1.19.0.zip(r-4.3)
cytomapper_1.19.0.tgz(r-4.4-any)cytomapper_1.19.0.tgz(r-4.3-any)
cytomapper_1.19.0.tar.gz(r-4.5-noble)cytomapper_1.19.0.tar.gz(r-4.4-noble)
cytomapper_1.19.0.tgz(r-4.4-emscripten)cytomapper_1.19.0.tgz(r-4.3-emscripten)
cytomapper.pdf |cytomapper.html✨
cytomapper/json (API)
NEWS
# Install 'cytomapper' in R: |
install.packages('cytomapper', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/bodenmillergroup/cytomapper/issues
- pancreasImages - Example CytoImageList object of image files
- pancreasMasks - Example CytoImageList object of segmentation masks
- pancreasSCE - Example SingleCellExperiment object
On BioConductor:cytomapper-1.19.0(bioc 3.21)cytomapper-1.18.0(bioc 3.20)
immunooncologysoftwaresinglecellonechanneltwochannelmultiplecomparisonnormalizationdataimportbioimagingimaging-mass-cytometrysingle-cellspatial-analysis
Last updated 3 months agofrom:ded2c6e85c. Checks:1 OK, 6 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 08 2025 |
R-4.5-win | NOTE | Jan 08 2025 |
R-4.5-linux | NOTE | Jan 08 2025 |
R-4.4-win | NOTE | Jan 08 2025 |
R-4.4-mac | NOTE | Jan 08 2025 |
R-4.3-win | NOTE | Dec 09 2024 |
R-4.3-mac | NOTE | Jan 08 2025 |
Exports:channelNameschannelNames<-coercecompImageCytoImageListcytomapperShinygetChannelsgetImagesloadImagesmeasureObjectsmergeChannelsnormalizeplotCellsplotPixelsscaleImagessetChannels<-setImages<-show
Dependencies:abindaskpassbase64encbeeswarmBHBiobaseBiocFileCacheBiocGenericsBiocParallelbitbit64bitopsblobbslibcachemclicodetoolscolorspacecommonmarkcpp11crayoncurlDBIdbplyrDelayedArraydigestdplyrEBImageevaluatefansifarverfastmapfftwtoolsfilelockfontawesomeformatRfsfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggbeeswarmggplot2gluegridExtragtableHDF5ArrayhighrhtmltoolshtmlwidgetshttpuvhttrIRangesisobandjpegjquerylibjsonliteknitrlabelinglambda.rlaterlatticelifecyclelocfitmagickmagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmennlsopensslpillarpkgconfigplogrpngpromisespurrrR6rappdirsrasterRColorBrewerRcppRCurlrhdf5rhdf5filtersRhdf5librjsonrlangrmarkdownRSQLiteS4ArraysS4VectorssassscalesshinyshinydashboardSingleCellExperimentsnowsourcetoolsspSparseArraySpatialExperimentstringistringrSummarizedExperimentsvglitesvgPanZoomsyssystemfontsterratibbletidyrtidyselecttifftinytexUCSC.utilsutf8vctrsviporviridisviridisLitewithrxfunxtableXVectoryaml
On disk storage and handling of images
Rendered fromcytomapper_ondisk.Rmd
usingknitr::rmarkdown
on Jan 08 2025.Last update: 2021-04-23
Started: 2021-03-20
Visualization of imaging cytometry data in R
Rendered fromcytomapper.Rmd
usingknitr::rmarkdown
on Jan 08 2025.Last update: 2021-09-15
Started: 2020-05-07
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Performs channel compensation on multi-channel images | compImage |
S4 class for list of images | coerce,ANY,CytoImageList-method coerce,list,CytoImageList-method CytoImageList CytoImageList-class show,CytoImageList-method |
Manipulating CytoImageList objects | CytoImageList-manipulation normalize normalize,CytoImageList-method scaleImages scaleImages,CytoImageList-method |
Getting and setting the channel and image names | channelNames channelNames,CytoImageList-method channelNames<- channelNames<-,CytoImageList-method CytoImageList-naming names,CytoImageList-method names<-,CytoImageList-method |
General subsetting methods for CytoImageList objects | CytoImageList-subsetting getChannels getChannels,CytoImageList-method getImages getImages,CytoImageList-method mergeChannels setChannels<- setChannels<-,CytoImageList-method setImages<- setImages<-,CytoImageList-method [<-,CytoImageList,ANY,ANY,CytoImageList-method [[<-,CytoImageList,ANY,ANY-method |
Shiny application to visualise gated cells on images | cytomapperShiny |
Read images into CytoImageList object | loadImages |
Compute morphological and intensity features from objects on images. | measureObjects |
Example CytoImageList object of image files | pancreasImages |
Example CytoImageList object of segmentation masks | pancreasMasks |
Example SingleCellExperiment object | pancreasSCE |
Function to visualize cell-level information on segmentation masks | plotCells |
Function to visualize pixel-level information of multi-channel images | plotPixels |
Further plotting parameters for the cytomapper package | plotting-param |