Package: coseq 1.31.0
coseq: Co-Expression Analysis of Sequencing Data
Co-expression analysis for expression profiles arising from high-throughput sequencing data. Feature (e.g., gene) profiles are clustered using adapted transformations and mixture models or a K-means algorithm, and model selection criteria (to choose an appropriate number of clusters) are provided.
Authors:
coseq_1.31.0.tar.gz
coseq_1.31.0.zip(r-4.5)coseq_1.31.0.zip(r-4.4)coseq_1.31.0.zip(r-4.3)
coseq_1.31.0.tgz(r-4.4-any)coseq_1.31.0.tgz(r-4.3-any)
coseq_1.31.0.tar.gz(r-4.5-noble)coseq_1.31.0.tar.gz(r-4.4-noble)
coseq_1.31.0.tgz(r-4.4-emscripten)coseq_1.31.0.tgz(r-4.3-emscripten)
coseq.pdf |coseq.html✨
coseq/json (API)
NEWS
# Install 'coseq' in R: |
install.packages('coseq', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- fietz - RNA-seq data from the mouse neocortex in Fietz et al.
On BioConductor:coseq-1.31.0(bioc 3.21)coseq-1.30.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
geneexpressionrnaseqsequencingsoftwareimmunooncology
Last updated 25 days agofrom:7cb63f5638. Checks:ERROR: 1 NOTE: 4 OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | FAIL | Oct 31 2024 |
R-4.5-win | NOTE | Oct 31 2024 |
R-4.5-linux | NOTE | Oct 31 2024 |
R-4.4-win | NOTE | Oct 31 2024 |
R-4.4-mac | NOTE | Oct 31 2024 |
R-4.3-win | OK | Oct 31 2024 |
R-4.3-mac | OK | Oct 31 2024 |
Exports:clusterEntropyclusterInertiaclusterscompareARIcompareICLconvertLegacyCoseqcoseqcoseqFullResultscoseqGlobalPlotscoseqModelPlotscoseqResultscoseqRunDDSEextractDjumpextractICLkmeansProbaPostlikelihoodlogclrmatchContTablemodelnbClusterNormMixClusNormMixClusKNormMixParamplotprobaprofilesshowtcountstransformationTypetransformRNAseq
Dependencies:abindaskpassbayesmBHBiobaseBiocGenericsBiocParallelcapusheclassclicodetoolscolorspacecompositionscorrplotcpp11crayoncurlDelayedArrayDEoptimRDESeq2e1071edgeRfansifarverformatRfutile.loggerfutile.optionsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtableHTSClusterHTSFilterhttrIRangesisobandjsonlitelabelinglambda.rlatticelifecyclelimmalocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimemunsellmvtnormnlmeopensslpillarpkgconfigplotrixproxyR6RColorBrewerRcppRcppArmadilloRcppEigenrlangRmixmodrobustbaseS4ArraysS4VectorsscalessnowSparseArraystatmodSummarizedExperimentsystensorAtibbleUCSC.utilsutf8vctrsviridisLitewithrXVectorzlibbioc
coseq package: Quick-start guide
Rendered fromcoseq.Rmd
usingknitr::rmarkdown
on Oct 31 2024.Last update: 2020-12-03
Started: 2016-12-23
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Co-expression and co-abundance analysis of high-throughput sequencing data | coseq-package |
Calculation of per-cluster entropy | clusterEntropy |
Calculation of within-cluster inertia | clusterInertia |
Pairwise comparisons of ARI values among a set of clustering partitions | compareARI compareARI,coseqResults-method compareARI,data.frame-method compareARI,matrix-method compareARI,RangedSummarizedExperiment-method compareARI-methods |
Compare corrected ICL values after data transformation | compareICL |
Convert legacy coseq objects | convertLegacyCoseq |
Co-expression or co-abudance analysis of high-throughput sequencing data | coseq coseq,data.frame-method coseq,DESeqDataSet-method coseq,matrix-method coseq-methods |
Accessors for the assigned cluster labels of a coseqResults object. | clusters clusters,coseqResults-method clusters,data.frame-method clusters,matrix-method clusters,RangedSummarizedExperiment-method coseqFullResults coseqFullResults,coseqResults-method DDSEextract DDSEextract,Capushe-method Djumpextract Djumpextract,Capushe-method ICL ICL,coseqResults-method ICL,MixmodCluster-method ICL,NULL-method ICL,RangedSummarizedExperiment-method likelihood likelihood,coseqResults-method likelihood,MixmodCluster-method likelihood,NULL-method likelihood,RangedSummarizedExperiment-method model model,coseqResults-method nbCluster nbCluster,coseqResults-method nbCluster,MixmodCluster-method nbCluster,NULL-method nbCluster,RangedSummarizedExperiment-method proba proba,MixmodCluster-method profiles profiles,coseqResults-method show show,coseqResults-method tcounts tcounts,coseqResults-method transformationType transformationType,coseqResults-method |
coseqResults object and constructor | coseqResults coseqResults-class |
Co-expression analysis | coseqRun |
RNA-seq data from the mouse neocortex in Fietz et al. (2012) | fietz |
Calculate conditional probabilities of cluster membership for K-means clustering | kmeansProbaPost |
Calculate the Log Centered Log Ratio (logCLR) transformation | logclr |
Permute columns of a contingency table | matchContTable |
Normal mixture model estimation and selection for a series of cluster numbers | NormMixClus |
Normal mixture model estimation | NormMixClusK |
Calculate the mean and covariance for a Normal mixture model | NormMixParam |
Visualize results from coseq clustering | coseqGlobalPlots coseqModelPlots plot plot,coseqResults-method plot-methods |
Summarize results from coseq clustering | summary summary,coseqResults-method summary-methods |
Transform RNA-seq data using common transformations | transformRNAseq |