Package: combi 1.19.0

Stijn Hawinkel

combi: Compositional omics model based visual integration

This explorative ordination method combines quasi-likelihood estimation, compositional regression models and latent variable models for integrative visualization of several omics datasets. Both unconstrained and constrained integration are available. The results are shown as interpretable, compositional multiplots.

Authors:Stijn Hawinkel [cre, aut]

combi_1.19.0.tar.gz
combi_1.19.0.zip(r-4.5)combi_1.19.0.zip(r-4.4)combi_1.19.0.zip(r-4.3)
combi_1.19.0.tgz(r-4.4-any)combi_1.19.0.tgz(r-4.3-any)
combi_1.19.0.tar.gz(r-4.5-noble)combi_1.19.0.tar.gz(r-4.4-noble)
combi_1.19.0.tgz(r-4.4-emscripten)combi_1.19.0.tgz(r-4.3-emscripten)
combi.pdf |combi.html
combi/json (API)
NEWS

# Install 'combi' in R:
install.packages('combi', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/centerforstatistics-ugent/combi/issues

Datasets:
  • zhangMetabo - Metabolomes of mice that underwent Pulsed Antibiotic Treatment (PAT) and controls
  • zhangMetavars - Baseline sample variables of PAT and control mice
  • zhangMicrobio - Microbiomes of mice that underwent Pulsed Antibiotic Treatment (PAT) and controls

On BioConductor:combi-1.17.0(bioc 3.20)combi-1.16.0(bioc 3.19)

metagenomicsdimensionreductionmicrobiomevisualizationmetabolomics

4.48 score 1 stars 7 scripts 186 downloads 7 exports 94 dependencies

Last updated 23 days agofrom:fb1252acbe. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winNOTEOct 30 2024
R-4.5-linuxNOTEOct 30 2024
R-4.4-winNOTEOct 30 2024
R-4.4-macNOTEOct 31 2024
R-4.3-winNOTEOct 30 2024
R-4.3-macNOTEOct 31 2024

Exports:addLinkcheckMeanVarTrendcombiconvPlotextractCoordsextractDatainflPlot

Dependencies:abindade4alabamaapeaskpassBBBiobaseBiocGenericsbiomformatBiostringscliclustercobscodetoolscolorspacecpp11crayoncurldata.tableDBIDelayedArraydigestfansifarverforeachGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2gluegtablehttrigraphIRangesisobanditeratorsjsonlitelabelinglatticelifecyclelimmamagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmgcvmimemulttestmunsellnleqslvnlmenumDerivopensslpermutephyloseqpillarpixmappkgconfigplyrquadprogquantregR6RColorBrewerRcppRcppArmadilloreshape2rhdf5rhdf5filtersRhdf5librlangS4ArraysS4VectorsscalesspSparseArraySparseMstatmodstringistringrSummarizedExperimentsurvivalsystensortibbleUCSC.utilsutf8vctrsveganviridisLitewithrXVectorzlibbioc

Manual for the combi pacakage

Rendered fromcombi.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2021-11-30
Started: 2020-03-18

Readme and manuals

Help Manual

Help pageTopics
Add a link on a compositional plotaddLink
Array multiplicationarrayMult
A function to build a centering matrix based on a dataframebuildCentMat
Build the composition matrix for a certain dimension m dimensionsbuildCompMat
Build confounder design matrices with and without interceptsbuildConfMat
A function to build the covariate matrix of the constraintsbuildCovMat
Prepare an empty Jacobian matrix, with useful entries prefilled. In case of distribution "gaussian", it returns the lhs matrix of the linear system for finding the feature paramtersbuildEmptyJac
Build an offset matrix from an marginal model objectbuildMarginalOffset
A function to build the mu matrixbuildMu
Build the marginal mu matrixbuildMuMargins
Build a marginal offset matrix given a modelbuildOffsetModel
Check for alias structures in a dataframe, and throw an error when one is foundcheckAlias
Quickly check if the mean variance trend provides a good fitcheckMeanVarTrend
Check for monotonicity in compositional datasets fro given dimensionscheckMonotonicity
Perform model-based data integrationcombi
Plot the convegrence of the different parameter estimates in a line plotconvPlot
The score function to estimate the latent variablesderiv2LagrangianFeatures
The jacobian function to estimate the latent variablesderiv2LagrangianLatentVars
The score function to estimate the latent variablesderiv2LagrangianLatentVarsConstr
The score function to estimate the feature parametersderivLagrangianFeatures
The score function to estimate the latent variablesderivLagrangianLatentVars
The score function to estimate the latent variablesderivLagrangianLatentVarsConstr
Estimate the feature parametersestFeatureParameters
Estimate the independence model belonging to one viewestIndepModel
Estimate the latent variablesestLatentVars
Estimate a column-wise mean-variance trendestMeanVarTrend
Estimate the row/column parameters of the independence modelestOff
Extract coordinates from fitted objectextractCoords
Helper function to extract data matrix from phyloseq, expressionset objects etc. Also filers out all zero rowsextractData
A function to extract a data matrix from a number of objectsextractMat extractMat,ExpressionSet-method extractMat,matrix-method extractMat,SummarizedExperiment-method
Filter out the effect of known confoundersfilterConfounders
Extract the influence on the estimation of the latent variablegetInflLatentVar
Gram schimdt orhtogonalize a with respect to b, and normalizegramSchmidtOrth
Functions to indent the plot to include the entire labelsindentPlot
A ggplot line plot showing the influencesinflPlot
Evaluate the influence functioninfluence.combi
Jacobian when estimating confounder variablesjacConfounders
Jacobian for conditioning under compositionalityjacConfoundersComp
Evaluate the jacobian for estimating the feature parameters for one viewjacFeatures
Evaluate the jacobian for estimating the latent variable for one viewjacLatentVars
Evaluate the jacobian for estimating the latent variable for one view for constrained ordinationjacLatentVarsConstr
Make multiplots of the data integration objectplot.combi
Horner's method to evaluate a polynomial, copied from the polynom package. the most efficient waypolyHorner
A custom spline prediction function, extending linearly with a slope such that prediction never drops below first bisectantpredictSpline
prepare the jacobian matrixprepareJacMat
prepare the jacobian for the latent variabels compostionalprepareJacMatComp
Prepare a helper matrix for score function evaluation under quasi-likelihoodprepareScoreMat
Print an overview of a fitted combi xprint.combi
The jacobian for column offset estimationquasiJacIndep
Quasi score equations for column offset parameters of sequence count dataquasiScoreIndep
A function to efficiently row multiply a matrix and a vectorrowMultiply
A helper function to rescale coordinatesscaleCoords
Score functions for confounder variablesscoreConfounders
Score equations for conditioning under compositionalityscoreConfoundersComp
Evaluate the score functions for the estimation of the feature parameters for a single datasetscoreFeatureParams
Evaluate the score functions for the estimation of the latent variables for a single datasetscoreLatentVars
A small auxiliary function for the indices of the lagrange multipliersseqM
Trim based on confounders to avoid taxa with only zero countstrimOnConfounders
Metabolomes of mice that underwent Pulsed Antibiotic Treatment (PAT) and controlszhangMetabo
Baseline sample variables of PAT and control micezhangMetavars
Microbiomes of mice that underwent Pulsed Antibiotic Treatment (PAT) and controlszhangMicrobio