Package 'combi'

Title: Compositional omics model based visual integration
Description: This explorative ordination method combines quasi-likelihood estimation, compositional regression models and latent variable models for integrative visualization of several omics datasets. Both unconstrained and constrained integration are available. The results are shown as interpretable, compositional multiplots.
Authors: Stijn Hawinkel [cre, aut]
Maintainer: Stijn Hawinkel <[email protected]>
License: GPL-2
Version: 1.19.0
Built: 2024-12-29 06:24:38 UTC
Source: https://github.com/bioc/combi

Help Index


Array multiplication

Description

Array multiplication

Usage

arrayMult(centralMat, outerMat, ncols = ncol(outerMat))

Arguments

centralMat

an nxp matrix

outerMat

an nxd matrix

ncols

an integer, the number of columns of outerMat

Value

an nxpxd matrix, the stacked matrices of centralMat multiplied to every column of outermat


A function to build a centering matrix based on a dataframe

Description

A function to build a centering matrix based on a dataframe

Usage

buildCentMat(object)

Arguments

object

an modelDI object or dataframe

Value

a centering matrix consisting of ones and zeroes, or a list with components

centMat

a centering matrix consisting of ones and zeroes

datFrame

The dataframe with factors with one level removed


Build the composition matrix for a certain dimension m dimensions

Description

Build the composition matrix for a certain dimension m dimensions

Usage

buildCompMat(
  colMat,
  paramEsts,
  latentVar,
  m,
  norm = TRUE,
  id = seq_len(m),
  subtractMax = TRUE
)

Arguments

colMat

The nxp independence model composition matrix

paramEsts

The matrix of feature parameter estimates

latentVar

The matrix of latent variables

m

the required dimension

norm

a boolean, should the composition matrix be normalized?

id

The vector of dimensions to consider

subtractMax

A boolean, should the maximum be substracted from every composition prior to exponentiation? Recommended for numerical stability

Value

A matrix with compositions in the rows


Build confounder design matrices with and without intercepts

Description

Build confounder design matrices with and without intercepts

Usage

buildConfMat(confounders)

Arguments

confounders

A dataframe of confounding variables #' For the preliminary trimming, we do not include an intercept, but we do include all the levels of the factors using contrasts=FALSE: we want to do the trimming in every subgroup, so no hidden reference levels For the filtering we just use a model with an intercept and treatment coding, here the interest is only in adjusting the offset

Value

a list with components

confModelMatTrim

A confounder matrix without intercept, with all levels of factors present. This will be used to trim out taxa that have zero abundances in any subgroup defined by confounders

confModelMat

A confounder matrix with intercept, and with reference levels for factors absent. This will be used to fit the model to modify the independence model, and may include continuous variables


A function to build the covariate matrix of the constraints

Description

A function to build the covariate matrix of the constraints

Usage

buildCovMat(datFrame)

Arguments

datFrame

the dataframe with which the covariate matrix is to be built

In this case we will 1) Include dummy's for every level of the categorical variable, and force them to sum to zero. This is needed for plotting and required for reference level indepenent normalization. 2) Exclude an intercept. The density function f() will provide this already.

Value

a list with components

covModelMat

The model matrix

datFrame

The dataframe used to construct the model matrix


Prepare an empty Jacobian matrix, with useful entries prefilled. In case of distribution "gaussian", it returns the lhs matrix of the linear system for finding the feature paramters

Description

Prepare an empty Jacobian matrix, with useful entries prefilled. In case of distribution "gaussian", it returns the lhs matrix of the linear system for finding the feature paramters

Usage

buildEmptyJac(
  n,
  m,
  lower,
  distribution = "quasi",
  normal = FALSE,
  nLambda1s = 1,
  centMat = NULL,
  weights = 1
)

Arguments

n

the number of parameters

m

the dimension

lower

the current parameter estimates

distribution

A character string, the distributional assumption for the data

normal

a boolean, are normalization restrictions in place?

nLambda1s

The number of centering restrictions

centMat

The centering matrix

weights

Vector of feature weights

Value

an empty jacobian matrix, or the lhs of the system of estimating equations


Build an offset matrix from an marginal model object

Description

Build an offset matrix from an marginal model object

Usage

buildMarginalOffset(indepModel, invLink)

Arguments

indepModel

The fitted marginal model, a list

invLink

The inverse link function

Value

an offset matrix of the size of the data


A function to build the mu matrix

Description

A function to build the mu matrix

Usage

buildMu(offSet, latentVar, paramEsts, distribution, paramMatrix = FALSE)

Arguments

offSet

the offset matrix

latentVar, paramEsts, distribution

Latent variables, parameter estimates and distribution type

paramMatrix

A boolean, are feature parameters provided as matrix

Value

The mean matrix


Build the marginal mu matrix

Description

Build the marginal mu matrix

Usage

buildMuMargins(x, otherMargin, col)

Arguments

x

The marginal parameters begin estimated

otherMargin

The parameters of the other margin

col

A logical, are the column parameters being estimated?

Value

a matrix of means


Build a marginal offset matrix given a model

Description

Build a marginal offset matrix given a model

Usage

buildOffsetModel(modelObj, View, distributions, compositional)

Arguments

modelObj

a modelDI object

View

The view for which to build the offset

distributions, compositional

belong to the view

Value

The offset matrix


Check for alias structures in a dataframe, and throw an error when one is found

Description

Check for alias structures in a dataframe, and throw an error when one is found

Usage

checkAlias(datFrame, covariatesNames)

Arguments

datFrame

the data frame to be checked for alias structure

covariatesNames

The names of the variables to be considered

Value

Throws an error when an alias structure is detected, returns invisible otherwise


Quickly check if the mean variance trend provides a good fit

Description

Quickly check if the mean variance trend provides a good fit

Usage

checkMeanVarTrend(data, meanVarFit = "spline", returnTrend = FALSE, ...)

Arguments

data

Data in any acceptable format (see details ?combi)

meanVarFit

The type of mean variance fit, either "cubic" or "spline"

returnTrend

A boolean, should the estimated trend be returned (TRUE) or only plotted (FALSE)?

...

passed on to the estMeanVarTrend() function

Value

A plot object

Examples

data(Zhang)
par(mfrow = c(1,2))
lapply(list("microbiome" = zhangMicrobio, "metabolome" = zhangMetabo),
 checkMeanVarTrend)
 par(mfrow = c(1,1))

Check for monotonicity in compositional datasets fro given dimensions

Description

Check for monotonicity in compositional datasets fro given dimensions

Usage

checkMonotonicity(modelObj, Dim)

Arguments

modelObj

The combi fit

Dim

The dimensions considered

Value

A boolean matrix indicating monotonicity for every feature


Perform model-based data integration

Description

Perform model-based data integration

Usage

combi(
  data,
  M = 2L,
  covariates = NULL,
  distributions,
  compositional,
  maxIt = 300L,
  tol = 0.001,
  verbose = FALSE,
  prevCutOff = 0.95,
  minFraction = 0.1,
  logTransformGaussian = TRUE,
  confounders = NULL,
  compositionalConf = rep(FALSE, length(data)),
  nleq.control = list(maxit = 1000L, cndtol = 1e-16),
  record = TRUE,
  weights = NULL,
  fTol = 1e-05,
  meanVarFit = "spline",
  maxFeats = 2000,
  dispFreq = 10L,
  allowMissingness = FALSE,
  biasReduction = TRUE,
  maxItFeat = 20L,
  initPower = 1
)

Arguments

data

A list of data objects with the same number of samples. See details.

M

the required dimension of the fit, a non-negative integer

covariates

a dataframe of n samples with sample-specific variables.

distributions

a character vector describing which distributional assumption should be used. See details.

compositional

A logical vector with the same length as "data", indicating if the datasets should be treated as compositional

maxIt

an integer, the maximum number of iterations

tol

A small scalar, the convergence tolerance

verbose

Logical. Should verbose output be printed to the console?

prevCutOff

a scalar, the prevalance cutoff for the trimming.

minFraction

a scalar, each taxon's total abundance should equal at least the number of samples n times minFraction, otherwise it is trimmed.

logTransformGaussian

A boolean, should the gaussian data be logtransformed, i.e. are they log-normal?

confounders

A dataframe or a list of dataframes with the same length as data. In the former case the same dataframe is used for conditioning, In the latter case each view has its own conditioning variables (or NULL).

compositionalConf

A logical vector with the same length as "data", indicating if the datasets should be treated as compositional when correcting for confounders. Numerical problems may occur when set to TRUE

nleq.control

A list of arguments to the nleqslv function

record

A boolean, should intermediate estimates be stored? Can be useful to check convergence

weights

A character string, either 'marginal' or 'uniform', indicating rrhow the feature parameters should be weighted in the normalization

fTol

The tolerance for solving the estimating equations

meanVarFit

The type of mean variance fit, see details

maxFeats

The maximal number of features for a Newton-Raphson procedure to be feasible

dispFreq

An integer, the period after which the variances should be reestimated

allowMissingness

A boolean, should NA values be allowed?

biasReduction

A boolean, should bias reduction be applied to allow for confounder correction in groups with all zeroes? Not guaranteed to work

maxItFeat

Integers, the maximum allowed number of iterations in the estimation of the feature parameters

initPower

The power to be applied to the residual matrix used to calculate the starting value. Must be positive; can be tweaked in case of numerical problems (i.e. infinite values returned by nleqslv)

Details

Data can be provided as raw matrices with features in the columns, or as phyloseq, SummarizedExperiment or ExpressionSet objects. Estimation of independence model and view wise parameters can be parametrized. See ?BiocParallel::bplapply and ?BiocParallel::register. meanVarFit = "spline" yields a cubic spline fit for the abundance-variance trend, "cubic" gives a third degree polynomial. Both converge to the diagonal line with slope 1 for small means. Distribution can be either "quasi" for quasi likelihood or "gaussian" for Gaussian data

Value

An object of the "combi" class, containing all information on the data integration and fitting procedure

Examples

data(Zhang)
#The method works on several datasets at once, and simply is not very fast.
#Hence the "Not run" statement
## Not run: 
#Unconstrained
microMetaboInt = combi(
list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
logTransformGaussian = FALSE, verbose = TRUE)
#Constrained
microMetaboIntConstr = combi(
    list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
    distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
    logTransformGaussian = FALSE, covariates = zhangMetavars, verbose = TRUE)
    
## End(Not run)

Plot the convegrence of the different parameter estimates in a line plot

Description

Plot the convegrence of the different parameter estimates in a line plot

Usage

convPlot(
  model,
  latent = is.null(View),
  nVars = Inf,
  Dim = 1L,
  View = NULL,
  size = 0.125
)

Arguments

model

A fitted modelDI object

latent

A boolean, should latent variable trajectory be plotted

nVars

An integer, the number of variables to plot. By default all are plotted

Dim

An integer, the dimension to be plotted

View

An integer or character string, indicating the view to be plotted (if latent = FALSE)

size

The line size (see ?geom_path)

Value

A ggplot object containing the convergence plot

Examples

## Not run: 
data(Zhang)
#Unconstrained
microMetaboInt = combi(
list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
logTransformGaussian = FALSE, verbose = TRUE)
## End(Not run)
load(system.file("extdata", "zhangFits.RData", package = "combi"))
convPlot(microMetaboInt)
convPlot(microMetaboInt, Dim = 2)
convPlot(microMetaboInt, View = "microbiome")

The score function to estimate the latent variables

Description

The score function to estimate the latent variables

Usage

deriv2LagrangianFeatures(
  x,
  data,
  distribution,
  offSet,
  latentVars,
  numVar,
  paramEstsLower,
  mm,
  Jac,
  meanVarTrend,
  weights,
  compositional,
  indepModel,
  ...
)

Arguments

x

parameter estimates

data

A list of data matrices

distribution, compositional, meanVarTrend, offSet, numVar

Characteristics of the view

latentVars

A vector of latent variables

paramEstsLower

lower dimension estimates

mm

the current dimension

Jac

a prefab jacobian

weights

The normalization weights

indepModel

the independence model

...

Additional arguments passed on to the score and jacobian functions

Value

A vector of length n, the evaluation of the score functions of the latent variables


The jacobian function to estimate the latent variables

Description

The jacobian function to estimate the latent variables

Usage

deriv2LagrangianLatentVars(
  x,
  data,
  distributions,
  offsets,
  paramEsts,
  paramMats,
  numVars,
  latentVarsLower,
  n,
  m,
  Jac,
  numSets,
  meanVarTrends,
  links,
  varPosts,
  indepModels,
  compositional,
  ...
)

Arguments

x

The current estimates of the latent variables

distributions, links, compositional, data, meanVarTrends, offsets, numVars, numSets, paramMats, paramEsts, varPosts, indepModels

Characteristics of the views

latentVarsLower

The parameter estimates of the lower dimensions

n, m

integers, number of samples and dimensions

Jac

an empty jacobian matrix

...

arguments to the jacobian function, currently ignored

Value

A vector of length n, the evaluation of the score functions of the latent variables


The score function to estimate the latent variables

Description

The score function to estimate the latent variables

Usage

deriv2LagrangianLatentVarsConstr(
  x,
  data,
  distributions,
  offsets,
  paramEsts,
  paramMats,
  numVars,
  latentVarsLower,
  nn,
  m,
  Jac,
  numSets,
  meanVarTrends,
  links,
  numCov,
  covMat,
  nLambda1s,
  varPosts,
  compositional,
  indepModels,
  ...
)

Arguments

x

The current estimates of the latent variables

distributions, data, links, compositional, meanVarTrends, offsets, numVars, paramMats, paramEsts

Characteristics of the view

latentVarsLower

The parameter estimates of the lower dimensions

nn

number of samples

m, numSets, varPosts, indepModels

other arguments

Jac

an empty jacobian matrix

numCov

The number of covariates

covMat

the covariates matrix

nLambda1s

The number of centering restrictions

...

arguments to the jacobian function, currently ignored

Value

A vector of length nn, the evaluation of the score functions of the latent variables


The score function to estimate the feature parameters

Description

The score function to estimate the feature parameters

Usage

derivLagrangianFeatures(
  x,
  data,
  distribution,
  offSet,
  latentVars,
  numVar,
  paramEstsLower,
  mm,
  indepModel,
  meanVarTrend,
  weights,
  compositional,
  ...
)

Arguments

x

current parameter estimates

data

A list of data matrices

distribution, compositional, meanVarTrend, offSet, numVar, indepModel, paramEstsLower

Characteristics of the view

latentVars

A vector of latent variables

mm

the current dimension

weights

The normalization weights

...

arguments to the jacobian function, currently ignored

Value

A vector with the evaluation of the score functions of the feature parameters


The score function to estimate the latent variables

Description

The score function to estimate the latent variables

Usage

derivLagrangianLatentVars(
  x,
  data,
  distributions,
  offsets,
  paramEsts,
  paramMats,
  numVars,
  n,
  m,
  numSets,
  meanVarTrends,
  links,
  varPosts,
  latentVarsLower,
  compositional,
  indepModels,
  ...
)

Arguments

x

The current estimates of the latent variables

n

The number of samples

m

The dimensions

numSets

The number of views

latentVarsLower

The parameter estimates of the lower dimensions

compositional, links, indepModels, meanVarTrends, numVars, distributions, data, offsets, varPosts, paramMats, paramEsts

Lists of inforamtion on all the views

...

arguments to the jacobian function, currently ignored

Value

A vector of length n, the evaluation of the score functions of the latent variables


The score function to estimate the latent variables

Description

The score function to estimate the latent variables

Usage

derivLagrangianLatentVarsConstr(
  x,
  data,
  distributions,
  offsets,
  paramEsts,
  numVars,
  latentVarsLower,
  n,
  m,
  numSets,
  meanVarTrends,
  links,
  covMat,
  numCov,
  centMat,
  nLambda1s,
  varPosts,
  compositional,
  indepModels,
  paramMats,
  ...
)

Arguments

x

The current estimates of the latent variables

latentVarsLower

The parameter estimates of the lower dimensions

n

The number of samples

m

The dimensions

numSets

The number of views

covMat

The covariance matrix

numCov

The number of covariates

centMat

A centering matrix

nLambda1s

The number of dummy variables

compositional, links, indepModels, meanVarTrends, numVars, distributions, data, offsets, varPosts, paramMats, paramEsts

Lists of information on all the views

...

arguments to the jacobian function, currently ignored

Value

A vector of length n, the evaluation of the score functions of the latent variables


Estimate the feature parameters

Description

Estimate the feature parameters

Usage

estFeatureParameters(
  paramEsts,
  lambdasParams,
  seqSets,
  data,
  distributions,
  offsets,
  nCores,
  m,
  JacFeatures,
  meanVarTrends,
  latentVars,
  numVars,
  control,
  weights,
  compositional,
  indepModels,
  fTol,
  allowMissingness,
  maxItFeat,
  ...
)

Arguments

paramEsts

Current list of parameter estimates for the different views

lambdasParams

The lagrange multipliers

seqSets

A vector with view indices

data

A list of data matrices

distributions

A character vector describing the distributions

offsets

A list of offset matrices

nCores

The number of cores to use in multithreading

m

The dimension

JacFeatures

An empty Jacobian matrix

meanVarTrends

The mean-variance trends of the different views

latentVars

A vector of latent variables

numVars

The number of variables

control

A list of control arguments for the nleqslv function

weights

The normalization weights

compositional

A list of booleans indicating compositionality

indepModels

A list of independence model

fTol

A convergence tolerance

allowMissingness

A boolean indicating whether missing values are allowed

maxItFeat

An integer, the maximum number of iterations

...

Additional arguments passed on to the score and jacobian functions

Value

A vector with estimates of the feature parameters


Estimate the independence model belonging to one view

Description

Estimate the independence model belonging to one view

Usage

estIndepModel(
  data,
  distribution,
  compositional,
  maxIt,
  tol,
  link,
  invLink,
  meanVarFit,
  newtonRaphson,
  dispFreq,
  ...
)

Arguments

data

a list of data matrices with the same number of samples n in the rows. Also phyloseq objects are acceptable

distribution

a character string describing which distributional assumption should be used.

compositional

A logical indicating if the dataset should be treated as compositional

maxIt

an integer, the maximum number of iterations

tol

A small scalar, the convergence tolerance

link, invLink

link and inverse link function

meanVarFit

mean variance model

newtonRaphson

a boolean, should newton-raphson be used

dispFreq

An integer, frequency of dispersion estimation

...

passed on to the estOff() function

Value

A list with elements

rowOff

The row offsets

colOff

The column offsets

converged

A logical flag, indicating whether the fit converged

iter

An integer, the number of iterations


Estimate the latent variables

Description

Estimate the latent variables

Usage

estLatentVars(latentVars, lambdasLatent, constrained, fTol, ...)

Arguments

latentVars

A vector of latent variables

lambdasLatent

A vector of Lagrange multipliers

constrained

A boolean, is the ordination constrained?

fTol

The convergence tolerance

...

additional arguments passed on to score and jacobian functions

Value

A vector of length n, the estimates of the latent variables


Estimate a column-wise mean-variance trend

Description

Estimate a column-wise mean-variance trend

Usage

estMeanVarTrend(
  data,
  meanMat,
  baseAbundances,
  libSizes,
  plot = FALSE,
  meanVarFit,
  degree = 2L,
  constraint = "none",
  ...
)

Arguments

data

the data matrix with n rows

meanMat

the estimated mean matrix

baseAbundances

The baseline abundances

libSizes

Library sizes

plot

A boolean, should the trend be plotted?

meanVarFit

A character string describing the type of trend to be fitted: either "spline" or "cubic"

degree

The degree of the spline

constraint

Constraint to the spline

...

additional arguments passed on to the plot() function

Value

A list with components

meanVarTrend

An smoothed trend function, that can map a mean on a variance

meanVarTrendDeriv

A derivative function of this


Estimate the row/column parameters of the independence model

Description

Estimate the row/column parameters of the independence model

Usage

estOff(
  data,
  distribution,
  rowOff,
  colOff,
  meanVarTrend,
  col,
  newtonRaphson,
  libSizes,
  ...
)

Arguments

data

a list of data matrices with the same number of samples n in the rows. Also phyloseq objects are acceptable

distribution

a character string describing which distributional assumption should be used.

rowOff, colOff

current row and column offset estimates

meanVarTrend

The estimated mean-variance trend

col

A logical, should column offsets be estimated

newtonRaphson

A boolean, should Newton-Raphson be used to solve the estimating equations

libSizes

The library sizes, used to evaluate the mean-variance trend

...

passed onto nleqslv

Value

The estimated marginal parameters


Extract coordinates from fitted object

Description

Extract coordinates from fitted object

Usage

extractCoords(modelObj, Dim)

Arguments

modelObj

The fitted model

Dim

the required dimensions

Value

A list with components (matrices with two columns)

latentData

The latent variables

featureData

The feature parameters

varData

The variables

Examples

data(Zhang)
## Not run: 
#Unconstrained
microMetaboInt = combi(
list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
logTransformGaussian = FALSE, verbose = TRUE)

## End(Not run)
    #Load the fits
load(system.file("extdata", "zhangFits.RData", package = "combi"))
extractCoords(microMetaboInt, Dim = c(1,2))

Helper function to extract data matrix from phyloseq, expressionset objects etc. Also filers out all zero rows

Description

Helper function to extract data matrix from phyloseq, expressionset objects etc. Also filers out all zero rows

Usage

extractData(data, logTransformGaussian = TRUE)

Arguments

data

The list of data objects, either matrix, phyloseq or ExpressionSet objects

logTransformGaussian

A boolean, should array data be logtransformed

Value

the raw data matrices, samples in the rows

Examples

data(Zhang)
matrixList = extractData(list("microbiome" = zhangMicrobio,
"metabolome" = zhangMetabo))

A function to extract a data matrix from a number of objects

Description

A function to extract a data matrix from a number of objects

Usage

extractMat(Y, ...)

## S4 method for signature 'ExpressionSet'
extractMat(Y, logTransformGaussian, ...)

## S4 method for signature 'SummarizedExperiment'
extractMat(Y, ...)

## S4 method for signature 'matrix'
extractMat(Y, ...)

Arguments

Y

a phyloseq or eSet object, or another object, or a raw data matrix

...

additional arguments for the extractor function

logTransformGaussian

A boolean, should array data be logtransformed

Value

A data matrix with samples in the rows and features in the columns


Filter out the effect of known confounders

Description

Filter out the effect of known confounders

Usage

filterConfounders(
  confMat,
  data,
  distribution,
  link,
  invLink,
  compositional,
  control,
  meanVarTrend,
  offSet,
  numVar,
  marginModel,
  biasReduction,
  allowMissingness
)

Arguments

confMat

A confounder design matrix

data

data matrix

distribution, link, invLink, compositional, meanVarTrend, offSet, numVar, marginModel

Characteristics of the view

control

A list of control elements to the nleqslv function

biasReduction

A boolean, should bias reduction be applied

allowMissingness

A boolean, are missing values allowed?

Value

Parameter estimates accounting for the effects of the confounders


Extract the influence on the estimation of the latent variable

Description

Extract the influence on the estimation of the latent variable

Usage

getInflLatentVar(score, InvJac, i)

Arguments

score

The score matrix

InvJac

The inverse Jacobian

i

the sample index

Value

The influence of all observations on the i-th latent variable


Gram schimdt orhtogonalize a with respect to b, and normalize

Description

Gram schimdt orhtogonalize a with respect to b, and normalize

Usage

gramSchmidtOrth(a, b, weights = 1, norm = TRUE)

Arguments

a

the vector to be orthogonalized

b

the vector to be orthogonalized to

weights

weights vector

norm

a boolean, should the result be normalized?

Value

The orthogonalized vector


Functions to indent the plot to include the entire labels

Description

Functions to indent the plot to include the entire labels

Usage

indentPlot(plt, xInd = 0, yInd = 0)

Arguments

plt

a ggplot object

xInd

a scalar or a vector of length 2, specifying the indentation left and right of the plot to allow for the labels to be printed entirely

yInd

a a scalar or a vector of length 2, specifying the indentation top and bottom of the plot to allow for the labels to be printed entirely

Value

a ggplot object, squared


A ggplot line plot showing the influences

Description

A ggplot line plot showing the influences

Usage

inflPlot(
  modelObj,
  plotType = ifelse(length(modelObj$data) <= 2, "pointplot", "boxplot"),
  pointFun = "sum",
  lineSize = 0.07,
  Dim = 1,
  samples = seq_len(nrow(if (is.null(modelObj$covariates)) modelObj$latentVars else
    modelObj$alphas)),
  ...
)

Arguments

modelObj

The fitted data integration

plotType

The type of plot requested, see details

pointFun

The function to calculate the summary measure to be plotted

lineSize

The line size

Dim

The dimension required

samples

index vector of which samples to be plotted

...

additional arguments passed on to the influence() function

Details

The options for plotType are: "pointPlot": Dot plot of total influence per view and sample, "boxplot": plot boxplot of influence of all observations per view and sample, "boxplotSingle": boxplot of log absolute total influence per view, "lineplot": line plot of total influence per view and sample. In the pointplot, dots crosses represent parameter estimates

Value

A ggplot object

Examples

data(Zhang)
#Unconstrained
microMetaboInt = combi(
list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
logTransformGaussian = FALSE, verbose = TRUE)
#Constrained
microMetaboIntConstr = combi(
    list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
    distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
    logTransformGaussian = FALSE, covariates = zhangMetavars, verbose = TRUE)
load(system.file("extdata", "zhangFits.RData", package = "combi"))
inflPlot(microMetaboInt)
#Constrained
inflPlot(microMetaboIntConstr)

Evaluate the influence function

Description

Evaluate the influence function

Usage

## S3 method for class 'combi'
influence(modelObj, samples = is.null(View), Dim = 1, View = NULL)

Arguments

modelObj

The model object

samples

A boolean, should we look at sample variables? Throws an error otherwise

Dim, View

Integers, the dimension and views required

Details

Especially the influence of the different views on the latent variable or gradient estimation may be of interest. The influence values are not all calculated. Rather, the score values and inverse jacobian are returned so they can easily be calculated

Value

A list with components

score

The evaluation of the score function

InvJac

The inverted jacobian matrix


Jacobian when estimating confounder variables

Description

Jacobian when estimating confounder variables

Usage

jacConfounders(
  confMat,
  data,
  distribution,
  x,
  meanVarTrend,
  offSet,
  CompMat,
  libSizes,
  allowMissingness
)

Arguments

data, confMat, meanVarTrend

Characteristics of the views

distribution, offSet

distribution and offset of the view

x

the parameter estimates

libSizes, CompMat

Library sizes and relative abunance

allowMissingness

a boolean, should missing values be allowed

Value

the jacobian matrix


Jacobian for conditioning under compositionality

Description

Jacobian for conditioning under compositionality

Usage

jacConfoundersComp(
  x,
  confMat,
  data,
  meanVarTrend,
  marginModel,
  allowMissingness,
  biasReduction,
  subtractMax = TRUE
)

Arguments

x

the parameter estimates

confMat, data, meanVarTrend

arguments belonging to views

marginModel, biasReduction, subtractMax

The marginal mode, and booleans indicating bias reduction and maximum subtraction

allowMissingness

a boolean, should missing values be allowed

Value

the jacobian matrix


Evaluate the jacobian for estimating the feature parameters for one view

Description

Evaluate the jacobian for estimating the feature parameters for one view

Usage

jacFeatures(
  latentVars,
  data,
  distribution,
  paramEsts,
  meanVarTrend,
  offSet,
  compositional,
  indepModel,
  m,
  paramEstsLower,
  allowMissingness,
  ...
)

Arguments

latentVars

A vector of latent variables

data

A list of data matrices

distribution, compositional, meanVarTrend, offSet, paramEsts, paramEstsLower, indepModel

Characteristics of each view

m

dimension

allowMissingness

a boolean, are missing values allowed?

...

Additional arguments passed on to the score and jacobian functions

Value

The jacobian matrix


Evaluate the jacobian for estimating the latent variable for one view

Description

Evaluate the jacobian for estimating the latent variable for one view

Usage

jacLatentVars(
  latentVar,
  data,
  distribution,
  paramEsts,
  paramMats,
  offSet,
  meanVarTrend,
  n,
  varPosts,
  mm,
  indepModel,
  latentVarsLower,
  compositional,
  allowMissingness,
  ...
)

Arguments

latentVar

the latent variable estimates

distribution, data, varPosts, compositional, meanVarTrend, offSet, paramEsts, paramMats, indepModel

Characteristics of each view

n

the number of samples

mm

the current dimension

latentVarsLower

the lower dimensional latent variables

allowMissingness

a boolean, should missing values be allowed

...

additional arguments passed on to score and jacobian functions

Value

The diagonal of the jacobian matrix


Evaluate the jacobian for estimating the latent variable for one view for constrained ordination

Description

Evaluate the jacobian for estimating the latent variable for one view for constrained ordination

Usage

jacLatentVarsConstr(
  latentVar,
  data,
  distribution,
  paramEsts,
  offSet,
  meanVarTrend,
  numCov,
  covMat,
  varPosts,
  compositional,
  mm,
  indepModel,
  latentVarsLower,
  ...
)

Arguments

latentVar

current latent variable estimates

distribution, compositional, meanVarTrend, offSet, paramEsts, indepModel, varPosts, data

Characteristics of each view

numCov

the number of covariates

covMat

the covariates matrix

mm

the dimension

latentVarsLower

latent variable estimates of lower dimensions

...

additional arguments passed on to score and jacobian functions

Value

The jacobian matrix


Make multiplots of the data integration object

Description

Make multiplots of the data integration object

Usage

## S3 method for class 'combi'
plot(
  x,
  ...,
  Dim = c(1, 2),
  samDf = NULL,
  samShape = NULL,
  samCol = NULL,
  featurePlot = "threshold",
  featNum = 15L,
  samColValues = NULL,
  manExpFactorTaxa = 0.975,
  featSize = switch(featurePlot, threshold = 2.5, points = samSize * 0.7, density = 0.35),
  crossSize = 4,
  manExpFactorVar = 0.975,
  varNum = nrow(x$alphas),
  varSize = 2.5,
  samSize = 1.75,
  featCols = c("darkblue", "darkgreen", "grey10", "turquoise4", "blue", "green", "grey",
    "cornflowerblue", "lightgreen", "grey75"),
  strokeSize = 0.05,
  warnMonotonicity = FALSE,
  returnCoords = FALSE,
  squarePlot = TRUE,
  featAlpha = 0.5,
  featShape = 8,
  xInd = 0,
  yInd = 0,
  checkOverlap = FALSE,
  shapeValues = (21:(21 + length(unique(samDf[[samShape]]))))
)

Arguments

x

the fit

...

additional arguments, currently ignored

Dim

the dimensions to be plotted

samDf

a dataframe of sample variables

samShape

A variable name from samDf used to shape the samples

samCol

A variable name from samDf used to colour the samples

featurePlot

A character string, either "threshold", "points" or "density". See details

featNum, varNum

The number of features and variables to plot

samColValues

Colours for the samples

manExpFactorTaxa, manExpFactorVar

Expansion factors for taxa and variables, normally calculated natively

featSize, crossSize, varSize, samSize, strokeSize

Size parameters for the features (text, dots or density contour lines), central cross, variable labels, sample dots, sample strokes and feature contour lines

featCols

Colours for the features

warnMonotonicity

A boolean, should a warning be thrown when the feature proportions of compositional views do not all vary monotonically with all latent variables?

returnCoords

A boolean, should coordinates be returned, e.g. for use in thrird party software

squarePlot

A boolean, should the axes be square? Strongly recommended

featAlpha

Controls the transparacny of the features

featShape

Shape of feature dots when featurePlot = "points"

xInd, yInd

x and y indentations

checkOverlap

A boolean, should overlapping labels be omitted?

shapeValues

the shapes, as numeric values

Details

It is usually impossible to plot all features with their labels. Therefore, he default option of the 'featurePlot' parameter is "threshold", whereby only the 'featNum" features furthest away from the origin are shown. Alternatively, the "points" or "density" options are available to plot all features as a point or density cloud, but without labels.

Value

A ggplot object containing the plot

Examples

data(Zhang)
## Not run: 
#Unconstrained
microMetaboInt = combi(
list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
logTransformGaussian = FALSE, verbose = TRUE)
#Constrained
microMetaboIntConstr = combi(
    list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
    distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
    logTransformGaussian = FALSE, covariates = zhangMetavars, verbose = TRUE)
## End(Not run)
    #Load the fits
load(system.file("extdata", "zhangFits.RData", package = "combi"))
plot(microMetaboInt)
plot(microMetaboInt, samDf = zhangMetavars, samCol = "ABX")
#Plot all features as points or density
plot(microMetaboInt, samDf = zhangMetavars, samCol = "ABX",
featurePlot = "points")
plot(microMetaboInt, samDf = zhangMetavars, samCol = "ABX",
featurePlot = "density")
#Constrained
plot(microMetaboIntConstr, samDf = zhangMetavars, samCol = "ABX")

Horner's method to evaluate a polynomial, copied from the polynom package. the most efficient way

Description

Horner's method to evaluate a polynomial, copied from the polynom package. the most efficient way

Usage

polyHorner(coefs, x)

Arguments

coefs

the polynomial coefficients

x

the input values for the polynomial function

Value

the evaluated polynomial


A custom spline prediction function, extending linearly with a slope such that prediction never drops below first bisectant

Description

A custom spline prediction function, extending linearly with a slope such that prediction never drops below first bisectant

Usage

predictSpline(
  fit,
  newdata,
  linX,
  coefsQuad,
  deriv = 0L,
  meanVarFit,
  minFit,
  new.knots,
  degree
)

Arguments

fit

The existing spline fit

newdata

points in which the spline needs to be evaluated

linX

The x at which the fit becomes linear and intersects the diagonal line

coefsQuad

parameters of a quadratic fit

deriv

An integer. Which derivative is required?

meanVarFit

A character string, indicating which type of mean variance fit is being used

minFit

The lower bound of the cubic fit

new.knots

The knots at which the spline is to be evaluated

degree

The degree of the polynomial fit

Value

The evaluation of the spline, i.e. the predicted variance


prepare the jacobian matrix

Description

prepare the jacobian matrix

Usage

prepareJacMat(mu, data, meanVarTrend, CompMat, libSizes)

Arguments

mu

the mean matrix

data

the count matrix

meanVarTrend

The mean variance trend

CompMat

The compisition matrix

libSizes

The library sizes

Value

the matrix which can be summed over


prepare the jacobian for the latent variabels compostional

Description

prepare the jacobian for the latent variabels compostional

Usage

prepareJacMatComp(mu, paramEsts, CompMat0, meanVarTrend, data, libSizes)

Arguments

mu

the mean matrix

paramEsts

Current parameter estimates

CompMat0

The compisition matrix

meanVarTrend

The mean variance trend

data

the count matrix

libSizes

The library sizesv

Value

The empty jacobian matrix with entries maximally filled out


Prepare a helper matrix for score function evaluation under quasi-likelihood

Description

Prepare a helper matrix for score function evaluation under quasi-likelihood

Usage

prepareScoreMat(data, mu, meanVarTrend, CompMat, libSizes)

Arguments

data

the count matrix

mu

the mean matrix

meanVarTrend

The mean variance trend

CompMat

The compisition matrix

libSizes

The library sizes

Value

The helper matrix


Print an overview of a fitted combi x

Description

Print an overview of a fitted combi x

Usage

## S3 method for class 'combi'
print(x, ...)

Arguments

x

a fitted combi x

...

Further arguments, currently ignored

Value

An overview of the number of dimensions, views and parameters, type of ordination and importance parameters

Examples

data(Zhang)
## Not run: 
#Unconstrained
microMetaboInt = combi(
list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
logTransformGaussian = FALSE, verbose = TRUE)
#Constrained
microMetaboIntConstr = combi(
    list("microbiome" = zhangMicrobio, "metabolomics" = zhangMetabo),
    distributions = c("quasi", "gaussian"), compositional = c(TRUE, FALSE),
    logTransformGaussian = FALSE, covariates = zhangMetavars, verbose = TRUE)
## End(Not run)
    #Load the fits
load(system.file("extdata", "zhangFits.RData", package = "combi"))
print(microMetaboInt)
print(microMetaboIntConstr)
#Or simply
microMetaboInt

The jacobian for column offset estimation

Description

The jacobian for column offset estimation

Usage

quasiJacIndep(x, data, otherMargin, meanVarTrend, col, libSizes, ...)

Arguments

x

the initial guess for the current margin

data

the data matrix

otherMargin

The other margin

meanVarTrend

the function describing the mean-variance trend

col

A logical, is the column being estimated?

libSizes

The library sizes

...

passed on to prepareJacMat

Value

the jacobian matrix


Quasi score equations for column offset parameters of sequence count data

Description

Quasi score equations for column offset parameters of sequence count data

Usage

quasiScoreIndep(x, data, otherMargin, meanVarTrend, col, libSizes, ...)

Arguments

x

the initial guess for the current margin

data

the data matrix

otherMargin

The other margin

meanVarTrend

the function describing the mean-variance trend

col

A logical, is the column being estimated?

libSizes

The library sizes

...

passed on to prepareJacMat

Value

the evaluated estimating equation


A function to efficiently row multiply a matrix and a vector

Description

A function to efficiently row multiply a matrix and a vector

Usage

rowMultiply(matrix, vector)

Arguments

matrix

a numeric matrix of dimension a-by-b

vector

a numeric vector of length b

t(t(matrix)*vector) but then faster

Details

Memory intensive but that does not matter with given matrix sizes

Value

a matrix, row multplied by the vector


A helper function to rescale coordinates

Description

A helper function to rescale coordinates

Usage

scaleCoords(featCoords, latentData, manExpFactorTaxa, featNum = NULL)

Arguments

featCoords

the feature coordinates to be rescaled

latentData

latent variables

manExpFactorTaxa

an expansion factor

featNum

the number of features to retain

Value

The rescaled feature coordinates


Score functions for confounder variables

Description

Score functions for confounder variables

Usage

scoreConfounders(
  x,
  data,
  distribution,
  offSet,
  confMat,
  meanVarTrend,
  allowMissingness,
  libSizes,
  CompMat
)

Arguments

x

the parameter estimates

data, distribution, offSet, confMat, meanVarTrend

Characteristics of the views

allowMissingness

a boolean, should missing values be allowed

libSizes, CompMat

Library sizes and relative abunance

Value

The evaluation of the estimating equations


Score equations for conditioning under compositionality

Description

Score equations for conditioning under compositionality

Usage

scoreConfoundersComp(
  x,
  confMat,
  data,
  meanVarTrend,
  marginModel,
  biasReduction,
  allowMissingness,
  subtractMax = TRUE
)

Arguments

x

Confounder parameter estimates

confMat

confounder matrix

data

data

meanVarTrend

mean variance trend

marginModel

marginal models

biasReduction

A boolean, should a bias reduced estimation be applied?

allowMissingness

A boolean, are missing values allowed

subtractMax

A boolean, shuold the maximum be subtracted before softmax transformation? Recommended for numerical stability

Value

The evaluation of the estimating equations


Evaluate the score functions for the estimation of the feature parameters for a single dataset

Description

Evaluate the score functions for the estimation of the feature parameters for a single dataset

Usage

scoreFeatureParams(
  x,
  data,
  distribution,
  offSet,
  latentVar,
  meanVarTrend,
  mm,
  indepModel,
  compositional,
  paramEstsLower,
  allowMissingness,
  ...
)

Arguments

x

the parameter estimates

data, distribution, offSet, meanVarTrend, indepModel, compositional, paramEstsLower

Characteristics of the views

latentVar

the latent variables

mm

the dimension

allowMissingness

a boolean, should missing values be allowed

...

Additional arguments passed on to the score and jacobian functions

Value

A vector with evaluated score function


Evaluate the score functions for the estimation of the latent variables for a single dataset

Description

Evaluate the score functions for the estimation of the latent variables for a single dataset

Usage

scoreLatentVars(
  data,
  distribution,
  paramEsts,
  paramMats,
  offSet,
  latentVar,
  meanVarTrend,
  constrained = FALSE,
  covMat = NULL,
  varPosts,
  compositional,
  indepModel,
  mm,
  latentVarsLower,
  allowMissingness,
  ...
)

Arguments

data, distribution, offSet, meanVarTrend, indepModel, varPosts, paramEsts, paramMats, compositional

Characteristics of the views

latentVar

the latent variable estimates

constrained

a boolean, is this a constrained analysis

covMat

a matrix of constraining covariates

mm

the current dimension

latentVarsLower

the lower dimensional latent variables

allowMissingness

a boolean, should missing values be allowed

...

additional arguments passed on to score and jacobian functions

Value

A vector of length n, with evaluated score function


A small auxiliary function for the indices of the lagrange multipliers

Description

A small auxiliary function for the indices of the lagrange multipliers

Usage

seqM(y, normal = TRUE, nLambda1s = 1)

Arguments

y

an integer, the current dimension

normal

a logical, is there a normalization restriction?

nLambda1s

the number of centering restrictions

Value

a vector containing the ranks of the current lagrangian multipliers


Trim based on confounders to avoid taxa with only zero counts

Description

Trim based on confounders to avoid taxa with only zero counts

Usage

trimOnConfounders(confounders, data, prevCutOff, minFraction, n)

Arguments

confounders

a nxt confounder matrix

data

the data matrix

prevCutOff

a scalar between 0 and 1, the prevalence cut off

minFraction

a scalar between 0 and 1, each taxon's total abundance should equal at least the number of samples n times minFraction, otherwise it is trimmed

n

the number of samples

Should be called prior to fitting the independence model

Value

A trimmed data matrix nxp'


Metabolomes of mice that underwent Pulsed Antibiotic Treatment (PAT) and controls

Description

Metabolome of mice that underwent Pulsed Antibiotic Treatment (PAT) and controls

Usage

data(Zhang)

Format

SummarizedExperiment with metabolome data

zhangMetabo

The metabolome data as a SummarizedExperiment object

Source

https://www.ibdmdb.org/


Baseline sample variables of PAT and control mice

Description

Baseline covariates of PAT mice and healthy controls

Usage

data(Zhang)

Format

A dataframe with baseline sample variables

zhangMetavars

The metadata on the mice

Source

https://www.ibdmdb.org/


Microbiomes of mice that underwent Pulsed Antibiotic Treatment (PAT) and controls

Description

Microbiome of mice that underwent Pulsed Antibiotic Treatment (PAT) and controls. The data were extracted from the source https://www.ibdmdb.org/, and then only the samples matching between microbiome and metabolome were retained.

Usage

data(Zhang)

Format

A phyloseq object containing microbiome data

zhangMicrobio

The microbiome dataset pruned for matches with the metabolome object

Source

https://www.ibdmdb.org/