Package: cancerclass 1.51.0

Daniel Kosztyla

cancerclass: Development and validation of diagnostic tests from high-dimensional molecular data

The classification protocol starts with a feature selection step and continues with nearest-centroid classification. The accurarcy of the predictor can be evaluated using training and test set validation, leave-one-out cross-validation or in a multiple random validation protocol. Methods for calculation and visualization of continuous prediction scores allow to balance sensitivity and specificity and define a cutoff value according to clinical requirements.

Authors:Jan Budczies, Daniel Kosztyla

cancerclass_1.51.0.tar.gz
cancerclass_1.51.0.zip(r-4.5)cancerclass_1.51.0.zip(r-4.4)cancerclass_1.51.0.zip(r-4.3)
cancerclass_1.51.0.tgz(r-4.4-x86_64)cancerclass_1.51.0.tgz(r-4.4-arm64)cancerclass_1.51.0.tgz(r-4.3-x86_64)cancerclass_1.51.0.tgz(r-4.3-arm64)
cancerclass_1.51.0.tar.gz(r-4.5-noble)cancerclass_1.51.0.tar.gz(r-4.4-noble)
cancerclass_1.51.0.tgz(r-4.4-emscripten)cancerclass_1.51.0.tgz(r-4.3-emscripten)
cancerclass.pdf |cancerclass.html
cancerclass/json (API)

# Install 'cancerclass' in R:
install.packages('cancerclass', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:cancerclass-1.51.0(bioc 3.21)cancerclass-1.50.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

cancermicroarrayclassificationvisualization

3.30 score 10 scripts 499 downloads 1 mentions 18 exports 4 dependencies

Last updated 3 months agofrom:7222a6be28. Checks:1 OK, 4 NOTE, 4 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 29 2024
R-4.5-win-x86_64NOTEDec 29 2024
R-4.5-linux-x86_64NOTEDec 29 2024
R-4.4-win-x86_64NOTEDec 29 2024
R-4.4-mac-x86_64WARNINGDec 29 2024
R-4.4-mac-aarch64WARNINGDec 29 2024
R-4.3-win-x86_64NOTEDec 29 2024
R-4.3-mac-x86_64WARNINGDec 29 2024
R-4.3-mac-aarch64WARNINGDec 29 2024

Exports:.initFoocalc.auccalc.rocfilterfitget.dget.d2get.lmget.ntrainilogitloonvalidateplotplot3dpredictpreparesummaryvalidate

Dependencies:binomBiobaseBiocGenericsgenerics

Cancerclass: An R package for development and validation of diagnostic tests from high-dimensional molecular data

Rendered fromvignette_cancerclass.Rnwusingutils::Sweaveon Dec 29 2024.

Last update: 2013-11-01
Started: 2013-11-01