Package: bnem 1.15.0

Martin Pirkl

bnem: Training of logical models from indirect measurements of perturbation experiments

bnem combines the use of indirect measurements of Nested Effects Models (package mnem) with the Boolean networks of CellNOptR. Perturbation experiments of signalling nodes in cells are analysed for their effect on the global gene expression profile. Those profiles give evidence for the Boolean regulation of down-stream nodes in the network, e.g., whether two parents activate their child independently (OR-gate) or jointly (AND-gate).

Authors:Martin Pirkl [aut, cre]

bnem_1.15.0.tar.gz
bnem_1.15.0.zip(r-4.5)bnem_1.15.0.zip(r-4.4)bnem_1.15.0.zip(r-4.3)
bnem_1.15.0.tgz(r-4.4-any)bnem_1.15.0.tgz(r-4.3-any)
bnem_1.15.0.tar.gz(r-4.5-noble)bnem_1.15.0.tar.gz(r-4.4-noble)
bnem_1.15.0.tgz(r-4.4-emscripten)bnem_1.15.0.tgz(r-4.3-emscripten)
bnem.pdf |bnem.html
bnem/json (API)
NEWS

# Install 'bnem' in R:
install.packages('bnem', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/martinfxp/bnem/issues

Datasets:
  • bcr - B-Cell receptor signalling perturbations

On BioConductor:bnem-1.13.0(bioc 3.20)bnem-1.12.0(bioc 3.19)

pathwayssystemsbiologynetworkinferencenetworkgeneexpressiongeneregulationpreprocessing

4.60 score 2 stars 5 scripts 166 downloads 19 exports 169 dependencies

Last updated 23 days agofrom:ea50de29fb. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-winNOTEOct 30 2024
R-4.5-linuxNOTEOct 30 2024
R-4.4-winNOTEOct 30 2024
R-4.4-macNOTEOct 30 2024
R-4.3-winNOTEOct 30 2024
R-4.3-macNOTEOct 30 2024

Exports:absorptionabsorptionIIaddNoisebnembnemBscomputeFcconvertGraphdummyCNOlistepiNEM2BgfindResidualsprocessDataBCRrandomDnfreduceGraphscoreDnfsimBoolGtnsimulateStatesRecursivetransClosetransRedvalidateGraph

Dependencies:abindaffyaffyioamapannotateAnnotationDbiapclusteraskpassbase64encbdsmatrixBHbinomBiobaseBiocGenericsBiocManagerBiocParallelBiostringsbitbit64bitopsblobBoolNetBoutrosLab.plotting.generalbslibcachemCellNOptRclasscliclueclustercodetoolscolorspacecorpcorcpp11crayoncurldata.tableDBIdeldirDEoptimRdigestdipteste1071edgeRellipseepiNEMevaluatefansifarverfastclusterfastICAfastmapflexclustflexmixfontawesomeformatRfpcfsfutile.loggerfutile.optionsgdatagenefilterGenomeInfoDbGenomeInfoDbDataggdendroggmggplot2gluegmodelsgraphgridExtragtablegtoolshexbinhighrhtmltoolshttrigraphinfotheointerpIRangesisobandjpegjquerylibjsonliteKEGGRESTkernlabknitrlabelinglambda.rlatex2explatticelatticeExtralifecyclelimmaLinnormlmtestlocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmclustmemoisemgcvmimeminetmnemmodeltoolsmunsellnaturalsortnlmennetopensslpcalgpermutepillarpkgconfigplogrpngprabcluspreprocessCoreproxyR6rappdirsRBGLRColorBrewerRcppRcppArmadilloRcppEigenRCurlRgraphvizrlangrmarkdownrobustbaseRSQLiteRtsneS4VectorssassscalessfsmiscsnowsnowfallstatmodstringistringrsurvivalsvasystibbletinytextsneUCSC.utilsutf8vcdvctrsveganviridisLitevsnwesandersonwithrxfunXMLxtableXVectoryamlzlibbioczoo

| Boolean Nested Effects Models: | Inferring the logical signalling of pathways from indirect measurements and biological perturbations.

Rendered frombnem.rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2020-12-08
Started: 2019-07-12