Package: bnem 1.15.0

Martin Pirkl

bnem: Training of logical models from indirect measurements of perturbation experiments

bnem combines the use of indirect measurements of Nested Effects Models (package mnem) with the Boolean networks of CellNOptR. Perturbation experiments of signalling nodes in cells are analysed for their effect on the global gene expression profile. Those profiles give evidence for the Boolean regulation of down-stream nodes in the network, e.g., whether two parents activate their child independently (OR-gate) or jointly (AND-gate).

Authors:Martin Pirkl [aut, cre]

bnem_1.15.0.tar.gz
bnem_1.15.0.zip(r-4.5)bnem_1.15.0.zip(r-4.4)bnem_1.15.0.zip(r-4.3)
bnem_1.15.0.tgz(r-4.5-any)bnem_1.15.0.tgz(r-4.4-any)bnem_1.15.0.tgz(r-4.3-any)
bnem_1.15.0.tar.gz(r-4.5-noble)bnem_1.15.0.tar.gz(r-4.4-noble)
bnem_1.15.0.tgz(r-4.4-emscripten)bnem_1.15.0.tgz(r-4.3-emscripten)
bnem.pdf |bnem.html
bnem/json (API)
NEWS

# Install 'bnem' in R:
install.packages('bnem', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/martinfxp/bnem/issues

Datasets:
  • bcr - B-Cell receptor signalling perturbations

On BioConductor:bnem-1.15.0(bioc 3.21)bnem-1.14.0(bioc 3.20)

pathwayssystemsbiologynetworkinferencenetworkgeneexpressiongeneregulationpreprocessing

4.60 score 2 stars 5 scripts 236 downloads 19 exports 169 dependencies

Last updated 5 months agofrom:ea50de29fb. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 27 2025
R-4.5-winNOTEMar 27 2025
R-4.5-macNOTEMar 27 2025
R-4.5-linuxNOTEMar 27 2025
R-4.4-winNOTEMar 27 2025
R-4.4-macNOTEMar 27 2025
R-4.4-linuxNOTEMar 27 2025
R-4.3-winNOTEMar 27 2025
R-4.3-macNOTEMar 27 2025

Exports:absorptionabsorptionIIaddNoisebnembnemBscomputeFcconvertGraphdummyCNOlistepiNEM2BgfindResidualsprocessDataBCRrandomDnfreduceGraphscoreDnfsimBoolGtnsimulateStatesRecursivetransClosetransRedvalidateGraph

Dependencies:abindaffyaffyioamapannotateAnnotationDbiapclusteraskpassbase64encbdsmatrixBHbinomBiobaseBiocGenericsBiocManagerBiocParallelBiostringsbitbit64bitopsblobBoolNetBoutrosLab.plotting.generalbslibcachemCellNOptRclasscliclueclustercodetoolscolorspacecorpcorcpp11crayoncurldata.tableDBIdeldirDEoptimRdigestdipteste1071edgeRellipseepiNEMevaluatefansifarverfastclusterfastICAfastmapflexclustflexmixfontawesomeformatRfpcfsfutile.loggerfutile.optionsgdatagenefiltergenericsGenomeInfoDbGenomeInfoDbDataggdendroggmggplot2gluegmodelsgraphgridExtragtablegtoolshexbinhighrhtmltoolshttrigraphinfotheointerpIRangesisobandjpegjquerylibjsonliteKEGGRESTkernlabknitrlabelinglambda.rlatex2explatticelatticeExtralifecyclelimmaLinnormlmtestlocfitmagrittrMASSMatrixMatrixGenericsmatrixStatsmclustmemoisemgcvmimeminetmnemmodeltoolsmunsellnaturalsortnlmennetopensslpcalgpermutepillarpkgconfigplogrpngprabcluspreprocessCoreproxyR6rappdirsRBGLRColorBrewerRcppRcppArmadilloRcppEigenRCurlRgraphvizrlangrmarkdownrobustbaseRSQLiteRtsneS4VectorssassscalessfsmiscsnowsnowfallstatmodstringistringrsurvivalsvasystibbletinytextsneUCSC.utilsutf8vcdvctrsveganviridisLitevsnwesandersonwithrxfunXMLxtableXVectoryamlzoo

| Boolean Nested Effects Models: | Inferring the logical signalling of pathways from indirect measurements and biological perturbations.

Rendered frombnem.rmdusingknitr::rmarkdownon Mar 27 2025.

Last update: 2020-12-08
Started: 2019-07-12