Package: bluster 1.17.0
bluster: Clustering Algorithms for Bioconductor
Wraps common clustering algorithms in an easily extended S4 framework. Backends are implemented for hierarchical, k-means and graph-based clustering. Several utilities are also provided to compare and evaluate clustering results.
Authors:
bluster_1.17.0.tar.gz
bluster_1.17.0.zip(r-4.5)bluster_1.17.0.zip(r-4.4)bluster_1.17.0.zip(r-4.3)
bluster_1.17.0.tgz(r-4.4-x86_64)bluster_1.17.0.tgz(r-4.4-arm64)bluster_1.17.0.tgz(r-4.3-x86_64)bluster_1.17.0.tgz(r-4.3-arm64)
bluster_1.17.0.tar.gz(r-4.5-noble)bluster_1.17.0.tar.gz(r-4.4-noble)
bluster_1.17.0.tgz(r-4.4-emscripten)bluster_1.17.0.tgz(r-4.3-emscripten)
bluster.pdf |bluster.html✨
bluster/json (API)
NEWS
# Install 'bluster' in R: |
install.packages('bluster', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
On BioConductor:bluster-1.15.1(bioc 3.20)bluster-1.14.0(bioc 3.19)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
immunooncologysoftwaregeneexpressiontranscriptomicssinglecellclustering
Last updated 25 days agofrom:510e7a15b0. Checks:OK: 7 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win-x86_64 | NOTE | Oct 30 2024 |
R-4.5-linux-x86_64 | NOTE | Oct 30 2024 |
R-4.4-win-x86_64 | OK | Oct 30 2024 |
R-4.4-mac-x86_64 | OK | Oct 30 2024 |
R-4.4-mac-aarch64 | OK | Oct 30 2024 |
R-4.3-win-x86_64 | OK | Oct 30 2024 |
R-4.3-mac-x86_64 | OK | Oct 30 2024 |
R-4.3-mac-aarch64 | OK | Oct 30 2024 |
Exports:.defaultScalarArguments.extractScalarArguments.showScalarArgumentsAffinityParamAgnesParamapproxSilhouettebootstrapStabilitycenterscenters<-ClaraParamclusterRMSDclusterRowsclusterSweepcompareClusteringsDbscanParamDianaParamDmmParamHclustParamKmeansParamKNNGraphParamlinkClusterslinkClustersMatrixmakeKNNGraphmakeSNNGraphMbkmeansParammergeCommunitiesneighborPurityneighborsToKNNGraphneighborsToSNNGraphnestedClustersNNGraphParampairwiseModularitypairwiseRandPamParamshowSNNGraphParamSomParamTwoStepParamupdateObject
Dependencies:assortheadBHBiocGenericsBiocNeighborsBiocParallelcliclustercodetoolscpp11formatRfutile.loggerfutile.optionsglueigraphlambda.rlatticelifecyclemagrittrMatrixpkgconfigRcpprlangS4Vectorssnowvctrs
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Define the default arguments | .defaultScalarArguments .defaultScalarArguments,BlusterParam-method .extractScalarArguments .showScalarArguments |
Affinity propogation | AffinityParam AffinityParam-class clusterRows,ANY,AffinityParam-method show,AffinityParam-method |
Agglomerative nesting | .defaultScalarArguments,AgnesParam-method AgnesParam AgnesParam-class clusterRows,ANY,AgnesParam-method show,AgnesParam-method |
Approximate silhouette width | approxSilhouette |
The BlusterParam class | BlusterParam-class show,BlusterParam-method [[,BlusterParam-method [[<-,BlusterParam-method |
Assess cluster stability by bootstrapping | bootstrapStability |
Clustering Large Applications | .defaultScalarArguments,ClaraParam-method ClaraParam ClaraParam-class clusterRows,ANY,ClaraParam-method show,ClaraParam-method |
Compute the RMSD per cluster | clusterRMSD |
Cluster rows of a matrix | clusterRows |
Clustering parameter sweeps | clusterSweep |
Compare pairs of clusterings | compareClusterings |
Density-based clustering with DBSCAN | clusterRows,ANY,DbscanParam-method DbscanParam DbscanParam-class show,DbscanParam-method |
Divisive analysis clustering | .defaultScalarArguments,DianaParam-method clusterRows,ANY,DianaParam-method DianaParam DianaParam-class show,DianaParam-method |
Dirichlet multinomial mixture clustering | clusterRows,ANY,DmmParam-method DmmParam DmmParam-class show,DmmParam-method |
The FixedNumberParam class | centers centers,FixedNumberParam-method centers<- centers<-,FixedNumberParam-method FixedNumberParam-class show,FixedNumberParam-method |
Hierarchical clustering | .defaultScalarArguments,HclustParam-method clusterRows,ANY,HclustParam-method HclustParam HclustParam-class show,HclustParam-method updateObject,HclustParam-method [[,HclustParam-method |
The HierarchicalParam class | .defaultScalarArguments,HierarchicalParam-method HierarchicalParam-class show,HierarchicalParam-method |
K-means clustering | clusterRows,ANY,KmeansParam-method KmeansParam KmeansParam-class show,KmeansParam-method updateObject,KmeansParam-method |
Create a graph between different clusterings | linkClusters linkClustersMatrix |
Build a nearest-neighbor graph | makeKNNGraph makeSNNGraph neighborsToKNNGraph neighborsToSNNGraph |
Mini-batch k-means clustering | clusterRows,ANY,MbkmeansParam-method MbkmeansParam MbkmeansParam-class show,MbkmeansParam-method |
Merge communities from graph-based clustering | mergeCommunities |
Compute neighborhood purity | neighborPurity |
Map nested clusterings | nestedClusters |
Graph-based clustering | clusterRows,ANY,KNNGraphParam-method clusterRows,ANY,SNNGraphParam-method KNNGraphParam KNNGraphParam-class NNGraphParam NNGraphParam-class show,NNGraphParam-method SNNGraphParam SNNGraphParam-class |
Compute pairwise modularity | pairwiseModularity |
Compute pairwise Rand indices | pairwiseRand |
Partitioning around medoids | .defaultScalarArguments,PamParam-method clusterRows,ANY,PamParam-method PamParam PamParam-class show,PamParam-method |
Clustering with self-organizing maps | clusterRows,ANY,SomParam-method show,SomParam-method SomParam SomParam-class |
Two step clustering with vector quantization | clusterRows,ANY,TwoStepParam-method show,TwoStepParam-method TwoStepParam TwoStepParam-class |