Package: biotmle 1.31.0

Nima Hejazi

biotmle: Targeted Learning with Moderated Statistics for Biomarker Discovery

Tools for differential expression biomarker discovery based on microarray and next-generation sequencing data that leverage efficient semiparametric estimators of the average treatment effect for variable importance analysis. Estimation and inference of the (marginal) average treatment effects of potential biomarkers are computed by targeted minimum loss-based estimation, with joint, stable inference constructed across all biomarkers using a generalization of moderated statistics for use with the estimated efficient influence function. The procedure accommodates the use of ensemble machine learning for the estimation of nuisance functions.

Authors:Nima Hejazi [aut, cre, cph], Alan Hubbard [aut, ths], Mark van der Laan [aut, ths], Weixin Cai [ctb], Philippe Boileau [ctb]

biotmle_1.31.0.tar.gz
biotmle_1.31.0.zip(r-4.5)biotmle_1.31.0.zip(r-4.4)biotmle_1.31.0.zip(r-4.3)
biotmle_1.31.0.tgz(r-4.4-any)biotmle_1.31.0.tgz(r-4.3-any)
biotmle_1.31.0.tar.gz(r-4.5-noble)biotmle_1.31.0.tar.gz(r-4.4-noble)
biotmle_1.31.0.tgz(r-4.4-emscripten)biotmle_1.31.0.tgz(r-4.3-emscripten)
biotmle.pdf |biotmle.html
biotmle/json (API)
NEWS

# Install 'biotmle' in R:
install.packages('biotmle', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nhejazi/biotmle/issues

On BioConductor:biotmle-1.31.0(bioc 3.21)biotmle-1.30.0(bioc 3.20)

regressiongeneexpressiondifferentialexpressionsequencingmicroarrayrnaseqimmunooncologybioconductorbioconductor-packagebioconductor-packagesbioinformaticsbiomarker-discoverybiostatisticscausal-inferencecomputational-biologymachine-learningstatisticstargeted-learning

5.20 score 4 stars 5 scripts 292 downloads 8 exports 101 dependencies

Last updated 2 months agofrom:7b0119e180. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 29 2024
R-4.5-winNOTENov 29 2024
R-4.5-linuxNOTENov 29 2024
R-4.4-winNOTENov 29 2024
R-4.4-macNOTENov 29 2024
R-4.3-winOKNov 29 2024
R-4.3-macOKNov 29 2024

Exports:.biotmlebiomarkertmleeifheatmap_icmodtest_icrnaseq_ictoptablevolcano_ic

Dependencies:abindaskpassassertthatBHBiobaseBiocGenericsBiocParallelbitopsbootcaToolsclicodetoolscolorspacecpp11crayoncubaturecurlcvAUCdata.tableDelayedArraydigestdplyrdrtmlefansifarverforeachformatRfutile.loggerfutile.optionsfuturefuture.applygamgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggdendroggplot2ggsciglobalsgluegplotsgtablegtoolshttrIRangesisobanditeratorsjsonliteKernSmoothlabelinglambda.rlatticelifecyclelimmalistenvmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmgcvmimemunsellnlmennlsnpopensslparallellypillarpkgconfigplyrquadprogquantregR6RColorBrewerRcpprlangROCRS4ArraysS4VectorsscalessnowSparseArraySparseMstatmodSummarizedExperimentsuperheatSuperLearnersurvivalsystibbletidyselectUCSC.utilsutf8vctrsviridisLitewithrXVectorzlibbioc

Identifying Biomarkers from an Exposure Variable with biotmle

Rendered fromexposureBiomarkers.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2021-10-12
Started: 2017-01-17