Package: biotmle 1.31.0

Nima Hejazi

biotmle: Targeted Learning with Moderated Statistics for Biomarker Discovery

Tools for differential expression biomarker discovery based on microarray and next-generation sequencing data that leverage efficient semiparametric estimators of the average treatment effect for variable importance analysis. Estimation and inference of the (marginal) average treatment effects of potential biomarkers are computed by targeted minimum loss-based estimation, with joint, stable inference constructed across all biomarkers using a generalization of moderated statistics for use with the estimated efficient influence function. The procedure accommodates the use of ensemble machine learning for the estimation of nuisance functions.

Authors:Nima Hejazi [aut, cre, cph], Alan Hubbard [aut, ths], Mark van der Laan [aut, ths], Weixin Cai [ctb], Philippe Boileau [ctb]

biotmle_1.31.0.tar.gz
biotmle_1.31.0.zip(r-4.5)biotmle_1.31.0.zip(r-4.4)biotmle_1.31.0.zip(r-4.3)
biotmle_1.31.0.tgz(r-4.5-any)biotmle_1.31.0.tgz(r-4.4-any)biotmle_1.31.0.tgz(r-4.3-any)
biotmle_1.31.0.tar.gz(r-4.5-noble)biotmle_1.31.0.tar.gz(r-4.4-noble)
biotmle_1.31.0.tgz(r-4.4-emscripten)biotmle_1.31.0.tgz(r-4.3-emscripten)
biotmle.pdf |biotmle.html
biotmle/json (API)
NEWS

# Install 'biotmle' in R:
install.packages('biotmle', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/nhejazi/biotmle/issues

On BioConductor:biotmle-1.31.0(bioc 3.21)biotmle-1.30.0(bioc 3.20)

regressiongeneexpressiondifferentialexpressionsequencingmicroarrayrnaseqimmunooncologybioconductorbioconductor-packagebioconductor-packagesbioinformaticsbiomarker-discoverybiostatisticscausal-inferencecomputational-biologymachine-learningstatisticstargeted-learning

5.30 score 5 stars 5 scripts 381 downloads 8 exports 100 dependencies

Last updated 5 months agofrom:7b0119e180. Checks:3 OK, 6 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-winNOTEMar 29 2025
R-4.5-macNOTEMar 29 2025
R-4.5-linuxNOTEMar 29 2025
R-4.4-winNOTEMar 29 2025
R-4.4-macNOTEMar 29 2025
R-4.4-linuxNOTEMar 29 2025
R-4.3-winOKMar 29 2025
R-4.3-macOKMar 29 2025

Exports:.biotmlebiomarkertmleeifheatmap_icmodtest_icrnaseq_ictoptablevolcano_ic

Dependencies:abindaskpassassertthatBHBiobaseBiocGenericsBiocParallelbitopsbootcaToolsclicodetoolscolorspacecpp11crayoncubaturecurlcvAUCdata.tableDelayedArraydigestdplyrdrtmlefansifarverforeachformatRfutile.loggerfutile.optionsfuturefuture.applygamgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggdendroggplot2ggsciglobalsgluegplotsgtablegtoolshttrIRangesisobanditeratorsjsonliteKernSmoothlabelinglambda.rlatticelifecyclelimmalistenvmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmgcvmimemunsellnlmennlsnpopensslparallellypillarpkgconfigplyrquadprogquantregR6RColorBrewerRcpprlangROCRS4ArraysS4VectorsscalessnowSparseArraySparseMstatmodSummarizedExperimentsuperheatSuperLearnersurvivalsystibbletidyselectUCSC.utilsutf8vctrsviridisLitewithrXVector

Identifying Biomarkers from an Exposure Variable with biotmle

Rendered fromexposureBiomarkers.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2021-10-12
Started: 2017-01-17