Package: bandle 1.11.0
Oliver M. Crook
bandle: An R package for the Bayesian analysis of differential subcellular localisation experiments
The Bandle package enables the analysis and visualisation of differential localisation experiments using mass-spectrometry data. Experimental methods supported include dynamic LOPIT-DC, hyperLOPIT, Dynamic Organellar Maps, Dynamic PCP. It provides Bioconductor infrastructure to analyse these data.
Authors:
bandle_1.11.0.tar.gz
bandle_1.11.0.zip(r-4.5)bandle_1.11.0.zip(r-4.4)bandle_1.11.0.zip(r-4.3)
bandle_1.11.0.tgz(r-4.4-x86_64)bandle_1.11.0.tgz(r-4.4-arm64)bandle_1.11.0.tgz(r-4.3-x86_64)bandle_1.11.0.tgz(r-4.3-arm64)
bandle_1.11.0.tar.gz(r-4.5-noble)bandle_1.11.0.tar.gz(r-4.4-noble)
bandle_1.11.0.tgz(r-4.4-emscripten)bandle_1.11.0.tgz(r-4.3-emscripten)
bandle.pdf |bandle.html✨
bandle/json (API)
NEWS
# Install 'bandle' in R: |
install.packages('bandle', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
The latest version of this package failed to build. Look at thebuild logs for more information.
Bug tracker:https://github.com/ococrook/bandle/issues
On BioConductor:bandle-1.11.0(bioc 3.21)bandle-1.10.0(bioc 3.20)
bayesianclassificationclusteringimmunooncologyqualitycontroldataimportproteomicsmassspectrometryopenblascppopenmp
Last updated 3 months agofrom:ca58277144. Checks:1 OK, 8 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 02 2024 |
R-4.5-win-x86_64 | WARNING | Dec 02 2024 |
R-4.5-linux-x86_64 | WARNING | Dec 02 2024 |
R-4.4-win-x86_64 | WARNING | Dec 02 2024 |
R-4.4-mac-x86_64 | WARNING | Dec 02 2024 |
R-4.4-mac-aarch64 | WARNING | Dec 02 2024 |
R-4.3-win-x86_64 | WARNING | Dec 02 2024 |
R-4.3-mac-x86_64 | WARNING | Dec 02 2024 |
R-4.3-mac-aarch64 | WARNING | Dec 02 2024 |
Exports:bandlebandle_get_outliersbandleJointbandlePredictbandleProcessbinomialDiffLocProbbootstrapdiffLocprobcalculateGelmancovOrganellediffLocdiffLocalisationProbdmvtCppEFDRfitGPfitGPmaternfitGPmaternPCGumbelkldirkldirpgmcmc_plot_probsmeanOrganellemrMethodpg_priorplotConvergenceplotGPmaternplotOutliersplotTableplotTranslocationsposteriorEstimatesprior_pred_dirprior_pred_pgsim_dynamicspatial2DStatStratumsummaries
Dependencies:abindaffyaffyioannotateAnnotationDbiAnnotationFilteraskpassassertthatbase64encBHBiobaseBiocBaseUtilsBiocFileCacheBiocGenericsBiocManagerBiocParallelBiocStylebiomaRtBiostringsbitbit64blobbookdownbslibcachemcaretcirclizeclasscliclockclueclustercodacodetoolscolorspacecommonmarkcpp11crayoncrosstalkcurldata.tableDBIdbplyrDelayedArraydendextendDEoptimRdiagramdigestdiptestdoParalleldplyre1071evaluatefansifarverfastmapfilelockflexmixFNNfontawesomeforeachformatRfpcfsfutile.loggerfutile.optionsfuturefuture.applygbmgdatagenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggalluvialggplot2ggrepelggvisGlobalOptionsglobalsgluegowergridExtragtablegtoolshardhathexbinhighrhmshtmltoolshtmlwidgetshttpuvhttrhttr2hwriterigraphimputeipredIRangesisobanditeratorsjquerylibjsonliteKEGGRESTkernlabKernSmoothknitrlabelinglambda.rLaplacesDemonlaterlatticelavalazyevallbfgslifecyclelimmalistenvlpSolvelubridatemagrittrMALDIquantMASSMatrixMatrixGenericsmatrixStatsmclustmemoisemgcvmimemixtoolsmlbenchMLInterfacesModelMetricsmodeltoolsMsCoreUtilsMSnbaseMultiAssayExperimentmunsellmvtnormmzIDmzRncdf4nlmennetnumDerivopensslparallellypcaMethodspillarpkgconfigplogrplotlyplsplyrpngprabcluspreprocessCoreprettyunitspROCprodlimprogressprogressrpRolocpRolocdatapromisesProtGenericsproxyPSMatchpurrrQFeaturesR6randomForestrappdirsRColorBrewerRcppRcppArmadillorecipesreshape2Rhdf5librlangrmarkdownrobustbaserpartRSQLiteS4ArraysS4VectorssamplingsassscalessegmentedsfsmiscshapeshinysnowsourcetoolsSparseArraySQUAREMstatmodstringistringrSummarizedExperimentsurvivalsysthreejstibbletidyrtidyselecttimechangetimeDatetinytextzdbUCSC.utilsutf8vctrsviridisviridisLitevsnwithrxfunXMLxml2xtableXVectoryamlzlibbioc
Vignette 1: Getting Started with BANDLE
Rendered fromv01-getting-started.Rmd
usingknitr::rmarkdown
on Dec 02 2024.Last update: 2024-11-01
Started: 2022-02-02
Vignette 2: A workflow for analysing differential localisation
Rendered fromv02-workflow.Rmd
usingknitr::rmarkdown
on Dec 02 2024.Last update: 2024-11-01
Started: 2022-02-02
Readme and manuals
Help Manual
Help page | Topics |
---|---|
An R package for the Bayesian analysis of differential subcellular localisation experiments | bandle-package |
Differential localisation experiments using the bandle method | bandle diffLoc |
Number of outliers at each iteration of MCMC | bandle_get_outliers |
Infrastructure to to store and process MCMC results | .bandleChain .bandleChains .bandleParams .bandleSummaries .bandleSummary .nicheParam .nicheParams bandleChain-class bandleChains-class bandleJoint bandleJoint,bandleSummary-method bandleParams-class bandleSummaries-class bandleSummary-class chains length,bandleChains-method length,bandleParams-method length,bandleSummaries-method length,nicheParams-method nicheParam-class nicheParams-class params posteriorEstimates posteriorEstimates,bandleSummary-method show,bandleChain-method show,bandleChains-method show,bandleParams-method show,bandleSummaries-method show,nicheParam-method show,nicheParams-method summaries [,bandleChains,ANY,ANY,ANY-method [,bandleParams,ANY,ANY,ANY-method [,bandleSummaries,ANY,ANY,ANY-method [,nicheParams,ANY,ANY,ANY-method [[,bandleChains,ANY,ANY-method [[,bandleParams,ANY,ANY-method [[,bandleSummaries,ANY,ANY-method [[,nicheParams,ANY,ANY-method |
Make predictions from a bandle analysis | bandlePredict |
process bandle results | bandleProcess |
bessel function of the second kind from boost library | besselK besselK_boost centeredData centeredDatamatern comploglike comploglikelist componentloglike dmvtCpp dmvtInt gradientamatern gradientGPcpp gradientGPcppmatern gradientrhomatern LeapfrogGPcpp LeapfrogGPcppPC likelihoodGPcpp loglikeGPcpp mahaInt makeComponent matern normalisedData normalisedDatamatern rcpp_pgdraw sampleAlloccpp sampleDirichlet sampleGPmeancpp sampleGPmeanmaterncpp sampleOutliercpp trenchDetcpp trenchInvcpp |
Calculate the Gelman and Rubin diagnostic for bandle output | calculateGelman |
Compute differential localisation probabilities from ms-based experiments using the bandle method | binomialDiffLocProb bootstrapdiffLocprob diffLocalisationProb |
Compute the expected False Discovery Rate | EFDR |
Fit a Gaussian process to spatial proteomics data | fitGP fitGPmatern fitGPmaternPC plotGPmatern |
Container for GP results | .gpParams gpParams-class |
Compute GP gradient | gradientGP gradientGPmatern gradientlogprior Gumbel likelihoodGP likelihoodGPmatern metropolisGP metropolisGPmatern PCrhomvar posteriorGPmatern posteriorgradientGPmatern |
Computes the Kullback-Leibler divergence between Polya-Gamma and Dirichlet priors | kldir kldirpg prior_pred_dir prior_pred_pg |
Generate a violin plot showing the probabilitiy of protein localisation to different organelles | mcmc_plot_probs |
Computes Organelle means and variances using markers | meanOrganelle |
Generates a histogram of ranks (a rank plot) for convergence | plotConvergence |
Generate trace and density plots for all chains | plotOutliers |
Generate a table of differential localisations | plotTable |
Plot changes in localisation between two conditions/datasets | plotTranslocations |
sample allocations, probabilities and compute loglikilihoods | covOrganelle outlierAllocationProbs pg_prior proteinAllocation sampleOutlier sample_weights_dir sample_weights_pg |
robust Mahalanobis distance | mrMethod reprodScore robustMahalanobis |
Generate a dynamic spatial proteomics experiment | sim_dynamic |
Generate a PCA plot with smoothed probability contours | spatial2D |
inherits StatSratum | StatStratum |