Package: XDE 2.53.0

Robert Scharpf

XDE: XDE: a Bayesian hierarchical model for cross-study analysis of differential gene expression

Multi-level model for cross-study detection of differential gene expression.

Authors:R.B. Scharpf, G. Parmigiani, A.B. Nobel, and H. Tjelmeland

XDE_2.53.0.tar.gz
XDE_2.53.0.zip(r-4.5)XDE_2.53.0.zip(r-4.4)XDE_2.53.0.zip(r-4.3)
XDE_2.53.0.tgz(r-4.4-x86_64)XDE_2.53.0.tgz(r-4.4-arm64)XDE_2.53.0.tgz(r-4.3-x86_64)XDE_2.53.0.tgz(r-4.3-arm64)
XDE_2.53.0.tar.gz(r-4.5-noble)XDE_2.53.0.tar.gz(r-4.4-noble)
XDE_2.53.0.tgz(r-4.4-emscripten)XDE_2.53.0.tgz(r-4.3-emscripten)
XDE.pdf |XDE.html
XDE/json (API)
NEWS

# Install 'XDE' in R:
install.packages('XDE', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On BioConductor:XDE-2.53.0(bioc 3.21)XDE-2.52.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

microarraydifferentialexpressioncpp

4.20 score 10 scripts 336 downloads 4 mentions 56 exports 55 dependencies

Last updated 3 months agofrom:ef93912ae2. Checks:1 OK, 8 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 27 2024
R-4.5-win-x86_64WARNINGDec 31 2024
R-4.5-linux-x86_64WARNINGDec 27 2024
R-4.4-win-x86_64WARNINGDec 31 2024
R-4.4-mac-x86_64WARNINGDec 27 2024
R-4.4-mac-aarch64WARNINGDec 27 2024
R-4.3-win-x86_64WARNINGDec 31 2024
R-4.3-mac-x86_64WARNINGDec 27 2024
R-4.3-mac-aarch64WARNINGDec 27 2024

Exports:.standardizedDeltabayesianEffectSizebayesianEffectSize<-burninburnin<-calculateBayesianEffectSizecalculatePosteriorAvgcoercedirectorydirectory<-empiricalStartfeatureDatafeatureNamesfirstMcmcfirstMcmc<-geneCenterhyperparametershyperparameters<-initializeiterationsiterations<-lapplylastMcmclastMcmc<-notesnrownSamplesoutputoutput<-pDataphenotypeLabelphenotypeLabel<-plotposteriorAvgposteriorAvg<-savedIterationsseedseed<-showshowIterationsshowIterations<-ssStatisticstandardizeSamplesstudyCenterstudyNamesstudyNames<-symbolsInterestingthinthin<-tuningtuning<-updatesupdates<-xdexsScoreszeroNu

Dependencies:annotateAnnotationDbiaskpassBiobaseBiocGenericsBiostringsbitbit64blobcachemclicpp11crayoncurlDBIfastmapgenefilterGeneMetagenericsGenomeInfoDbGenomeInfoDbDatagluegtoolshttrIRangesjsonliteKEGGRESTlatticelifecycleMASSMatrixMatrixGenericsmatrixStatsmemoisemimemulttestmvtnormopensslpkgconfigplogrpngR6RColorBrewerrlangRSQLiteS4VectorsscrimesiggenessurvivalsysUCSC.utilsvctrsXMLxtableXVector

XDE Vignette

Rendered fromXDE.Rnwusingutils::Sweaveon Dec 27 2024.

Last update: 2014-04-13
Started: 2014-04-13

XdeParameterClass Vignette

Rendered fromXdeParameterClass.Rnwusingutils::Sweaveon Dec 27 2024.

Last update: 2014-04-13
Started: 2014-04-13

Readme and manuals

Help Manual

Help pageTopics
Indicator for running a MCMC burninburnin burnin<-
Calculate the posterior average for indicators of concordant and discordant differential expressioncalculatePosteriorAvg
Empirical starting values for the MCMCempiricalStart
Example of ExpressionSetListexpressionSetList
A class for containing a list of ExpressionSetscoerce,list,ExpressionSetList-method dim,ExpressionSetList-method ExpressionSetList-class featureNames,ExpressionSetList-method geneCenter,ExpressionSetList-method lapply,ExpressionSetList-method nrow,ExpressionSetList-method nSamples nSamples,ExpressionSetList-method pca,ExpressionSetList-method pData,ExpressionSetList-method phenotype,ExpressionSetList,character-method standardizeSamples,ExpressionSetList-method studyCenter,ExpressionSetList-method zeroNu,ExpressionSetList-method [,ExpressionSetList-method
Methods for ExpressionSetListExpressionSetList-methods phenotype [,ExpressionSetList,ANY,ANY,ANY-method
Values for the first MCMC iterationfirstMcmc firstMcmc<-
Center the expression values for each gene in a study to zerogeneCenter
Accessor for hyperparameters of the Bayesian modelhyperparameters hyperparameters<-
Number of MCMC iterationsiterations iterations<-
MCMC values for the last iterationlastMcmc lastMcmc<-
Options for storing results of the MCMC chainsoutput output<-
pairs function for high-throughput datapairs,data.frame-method pairs,matrix-method pairs-methods
Container for XDE parameters$,Parameters-method $<-,Parameters-method coerce,XdeParameter,Parameters-method Parameters-class show,Parameters-method [[,Parameters-method [[<-,Parameters-method
Accessor and replacement methods for posterior averages of differential expressionposteriorAvg posteriorAvg<-
Seed for the MCMCseed seed<-
Calculate single study estimates of effect sizessStatistic
Centers the genes at zero and standardizes the samples to have variance 1standardizeSamples
Center the expression values in a study to zerostudyCenter
Useful for changing the look of pairs plots to emphasize concordant or discordant genessymbolsInteresting
How often to write MCMC iterations to filethin thin<-
Tuning parameters for Metropolis-Hastings proposalstuning tuning<-
Frequency of updating a parameter per MCMC iterationupdates updates<-
Fit the Bayesian hierarchical model for cross-study differential gene expressionxde
Class for storing output from the Bayesian model$ $,XdeMcmc-method .standardizedDelta,XdeMcmc-method bayesianEffectSize bayesianEffectSize,XdeMcmc-method bayesianEffectSize<- bayesianEffectSize<-,XdeMcmc,matrix-method calculateBayesianEffectSize calculateBayesianEffectSize,XdeMcmc-method calculatePosteriorAvg,XdeMcmc-method directory directory,XdeMcmc-method featureNames,XdeMcmc-method initialize,XdeMcmc-method iterations,XdeMcmc-method lastMcmc,XdeMcmc-method nrow,XdeMcmc-method output,XdeMcmc-method plot,XdeMcmc,ANY-method plot,XdeMcmc-method posteriorAvg,XdeMcmc-method posteriorAvg<-,XdeMcmc,matrix-method seed,XdeMcmc-method show,XdeMcmc-method studyNames,XdeMcmc-method XdeMcmc-class
Container class for storing options of the Bayesian hierarchical modelburnin,XdeParameter-method burnin<-,XdeParameter,logical-method coerce,XdeParameter,Params-method directory,XdeParameter-method directory<- directory<-,XdeParameter-method firstMcmc,XdeParameter-method firstMcmc<-,XdeParameter,environment-method firstMcmc<-,XdeParameter,list-method hyperparameters,XdeParameter-method hyperparameters<-,XdeParameter-method initialize,XdeParameter-method iterations,XdeParameter-method iterations<-,XdeParameter,integer-method iterations<-,XdeParameter,numeric-method output,XdeParameter-method output<-,XdeParameter-method phenotypeLabel phenotypeLabel,XdeParameter-method phenotypeLabel<- phenotypeLabel<-,XdeParameter,character-method savedIterations savedIterations,XdeParameter-method seed,XdeParameter-method seed<-,XdeParameter,integer-method seed<-,XdeParameter,numeric-method show,XdeParameter-method showIterations showIterations,XdeParameter-method showIterations<- showIterations<-,XdeParameter-method studyNames studyNames,XdeParameter-method studyNames<- studyNames<-,XdeParameter-method thin,XdeParameter-method thin<-,XdeParameter,numeric-method tuning,XdeParameter-method tuning<-,XdeParameter-method updates,XdeParameter-method updates<-,XdeParameter-method XdeParameter-class
Object of class XdeMcmcxmcmc
Alternative cross-study scores of differential expressionxsScores
Option for not modeling NuzeroNu