Package: SingleR 2.9.4
SingleR: Reference-Based Single-Cell RNA-Seq Annotation
Performs unbiased cell type recognition from single-cell RNA sequencing data, by leveraging reference transcriptomic datasets of pure cell types to infer the cell of origin of each single cell independently.
Authors:
SingleR_2.9.4.tar.gz
SingleR_2.9.4.zip(r-4.5)SingleR_2.9.4.zip(r-4.4)SingleR_2.9.4.zip(r-4.3)
SingleR_2.9.4.tgz(r-4.4-x86_64)SingleR_2.9.4.tgz(r-4.4-arm64)SingleR_2.9.4.tgz(r-4.3-x86_64)SingleR_2.9.4.tgz(r-4.3-arm64)
SingleR_2.9.4.tar.gz(r-4.5-noble)SingleR_2.9.4.tar.gz(r-4.4-noble)
SingleR_2.9.4.tgz(r-4.4-emscripten)SingleR_2.9.4.tgz(r-4.3-emscripten)
SingleR.pdf |SingleR.html✨
SingleR/json (API)
NEWS
# Install 'SingleR' in R: |
install.packages('SingleR', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/singler-inc/singler/issues
On BioConductor:SingleR-2.9.4(bioc 3.21)SingleR-2.8.0(bioc 3.20)
softwaresinglecellgeneexpressiontranscriptomicsclassificationclusteringannotationbioconductorsinglercpp
Last updated 1 months agofrom:c2922b38ca. Checks:7 OK, 2 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 20 2025 |
R-4.5-win-x86_64 | NOTE | Jan 20 2025 |
R-4.5-linux-x86_64 | NOTE | Jan 20 2025 |
R-4.4-win-x86_64 | OK | Jan 20 2025 |
R-4.4-mac-x86_64 | OK | Jan 20 2025 |
R-4.4-mac-aarch64 | OK | Jan 20 2025 |
R-4.3-win-x86_64 | OK | Jan 20 2025 |
R-4.3-mac-x86_64 | OK | Jan 20 2025 |
R-4.3-mac-aarch64 | OK | Jan 20 2025 |
Exports:.mockRefData.mockTestDataaggregateReferenceBlueprintEncodeDataclassifySingleRcombineCommonResultscombineRecomputedResultsconfigureMarkerHeatmapDatabaseImmuneCellExpressionDatagetClassicMarkersgetDeltaFromMedianHumanPrimaryCellAtlasDataImmGenDatamatchReferencesMonacoImmuneDataMouseRNAseqDataNovershternHematopoieticDataplotDeltaDistributionplotMarkerHeatmapplotScoreDistributionplotScoreHeatmappruneScoresrebuildIndexSingleRtrainSingleR
Dependencies:abindaskpassassortheadbeachmatBHBiobaseBiocGenericsBiocNeighborsBiocParallelcodetoolscpp11crayoncurlDelayedArrayDelayedMatrixStatsformatRfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangeshttrIRangesjsonlitelambda.rlatticeMatrixMatrixGenericsmatrixStatsmimeopensslR6RcppS4ArraysS4VectorssnowSparseArraysparseMatrixStatsSummarizedExperimentsysUCSC.utilsXVector
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Mock data for examples | .mockRefData .mockTestData |
Aggregate reference samples | aggregateReference |
Classify cells with SingleR | classifySingleR |
Combine SingleR results with recomputation | combineCommonResults combineRecomputedResults |
Reference dataset extractors | BlueprintEncodeData DatabaseImmuneCellExpressionData datasets HumanPrimaryCellAtlasData ImmGenData MonacoImmuneData MouseRNAseqData NovershternHematopoieticData |
Get classic markers | getClassicMarkers |
Compute the difference from median | getDeltaFromMedian |
Match labels from two references | matchReferences |
Plot delta distributions | plotDeltaDistribution |
Plot a heatmap of the markers for a label | configureMarkerHeatmap plotMarkerHeatmap |
Plot score distributions | plotScoreDistribution |
Plot a score heatmap | plotScoreHeatmap |
Prune out low-quality assignments | pruneScores |
Rebuild the index | rebuildIndex |
Annotate scRNA-seq data | SingleR |
Train the SingleR classifier | trainSingleR |