Package: SingleR 2.9.1

Aaron Lun

SingleR: Reference-Based Single-Cell RNA-Seq Annotation

Performs unbiased cell type recognition from single-cell RNA sequencing data, by leveraging reference transcriptomic datasets of pure cell types to infer the cell of origin of each single cell independently.

Authors:Dvir Aran [aut, cph], Aaron Lun [ctb, cre], Daniel Bunis [ctb], Jared Andrews [ctb], Friederike Dündar [ctb]

SingleR_2.9.1.tar.gz
SingleR_2.9.1.zip(r-4.5)SingleR_2.9.1.zip(r-4.4)SingleR_2.9.1.zip(r-4.3)
SingleR_2.9.1.tgz(r-4.4-x86_64)SingleR_2.9.1.tgz(r-4.4-arm64)SingleR_2.9.1.tgz(r-4.3-x86_64)SingleR_2.9.1.tgz(r-4.3-arm64)
SingleR_2.9.1.tar.gz(r-4.5-noble)SingleR_2.9.1.tar.gz(r-4.4-noble)
SingleR_2.9.1.tgz(r-4.4-emscripten)SingleR_2.9.1.tgz(r-4.3-emscripten)
SingleR.pdf |SingleR.html
SingleR/json (API)
NEWS

# Install 'SingleR' in R:
install.packages('SingleR', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/singler-inc/singler/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On BioConductor:SingleR-2.9.0(bioc 3.21)SingleR-2.8.0(bioc 3.20)

softwaresinglecellgeneexpressiontranscriptomicsclassificationclusteringannotationbioconductorsingler

12.45 score 177 stars 1 packages 2.0k scripts 6.2k downloads 97 mentions 25 exports 44 dependencies

Last updated 3 days agofrom:0a49952e09. Checks:OK: 7 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-win-x86_64NOTENov 19 2024
R-4.5-linux-x86_64NOTENov 19 2024
R-4.4-win-x86_64OKNov 19 2024
R-4.4-mac-x86_64OKNov 19 2024
R-4.4-mac-aarch64OKNov 19 2024
R-4.3-win-x86_64OKNov 19 2024
R-4.3-mac-x86_64OKNov 19 2024
R-4.3-mac-aarch64OKNov 19 2024

Exports:.mockRefData.mockTestDataaggregateReferenceBlueprintEncodeDataclassifySingleRcombineCommonResultscombineRecomputedResultsconfigureMarkerHeatmapDatabaseImmuneCellExpressionDatagetClassicMarkersgetDeltaFromMedianHumanPrimaryCellAtlasDataImmGenDatamatchReferencesMonacoImmuneDataMouseRNAseqDataNovershternHematopoieticDataplotDeltaDistributionplotMarkerHeatmapplotScoreDistributionplotScoreHeatmappruneScoresrebuildIndexSingleRtrainSingleR

Dependencies:abindaskpassassortheadbeachmatBHBiobaseBiocGenericsBiocNeighborsBiocParallelcodetoolscpp11crayoncurlDelayedArrayDelayedMatrixStatsformatRfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangeshttrIRangesjsonlitelambda.rlatticeMatrixMatrixGenericsmatrixStatsmimeopensslR6RcppS4ArraysS4VectorssnowSparseArraysparseMatrixStatsSummarizedExperimentsysUCSC.utilsXVectorzlibbioc

Using SingleR to annotate single-cell RNA-seq data

Rendered fromSingleR.Rmdusingknitr::rmarkdownon Nov 19 2024.

Last update: 2024-10-26
Started: 2019-07-12

Readme and manuals

Help Manual

Help pageTopics
Mock data for examples.mockRefData .mockTestData
Aggregate reference samplesaggregateReference
Classify cells with SingleRclassifySingleR
Combine SingleR results with common genescombineCommonResults
Combine SingleR results with recomputationcombineRecomputedResults
Reference dataset extractorsBlueprintEncodeData DatabaseImmuneCellExpressionData datasets HumanPrimaryCellAtlasData ImmGenData MonacoImmuneData MouseRNAseqData NovershternHematopoieticData
Get classic markersgetClassicMarkers
Compute the difference from mediangetDeltaFromMedian
Match labels from two referencesmatchReferences
Plot delta distributionsplotDeltaDistribution
Plot a heatmap of the markers for a labelconfigureMarkerHeatmap plotMarkerHeatmap
Plot score distributionsplotScoreDistribution
Plot a score heatmapplotScoreHeatmap
Prune out low-quality assignmentspruneScores
Rebuild the indexrebuildIndex
Annotate scRNA-seq dataSingleR
Train the SingleR classifiertrainSingleR