Package: SAIGEgds 2.7.1

Xiuwen Zheng

SAIGEgds: Scalable Implementation of Generalized mixed models using GDS files in Phenome-Wide Association Studies

Scalable implementation of generalized mixed models with highly optimized C++ implementation and integration with Genomic Data Structure (GDS) files. It is designed for single variant tests and set-based aggregate tests in large-scale Phenome-wide Association Studies (PheWAS) with millions of variants and samples, controlling for sample structure and case-control imbalance. The implementation is based on the SAIGE R package (v0.45, Zhou et al. 2018 and Zhou et al. 2020), and it is extended to include the state-of-the-art ACAT-O set-based tests. Benchmarks show that SAIGEgds is significantly faster than the SAIGE R package.

Authors:Xiuwen Zheng [aut, cre], Wei Zhou [ctb], J. Wade Davis [ctb]

SAIGEgds_2.7.1.tar.gz
SAIGEgds_2.7.1.zip(r-4.5)SAIGEgds_2.7.1.zip(r-4.4)SAIGEgds_2.7.1.zip(r-4.3)
SAIGEgds_2.7.1.tgz(r-4.4-x86_64)SAIGEgds_2.7.1.tgz(r-4.4-arm64)SAIGEgds_2.7.1.tgz(r-4.3-x86_64)SAIGEgds_2.7.1.tgz(r-4.3-arm64)
SAIGEgds_2.7.1.tar.gz(r-4.5-noble)SAIGEgds_2.7.1.tar.gz(r-4.4-noble)
SAIGEgds.pdf |SAIGEgds.html
SAIGEgds/json (API)
NEWS

# Install 'SAIGEgds' in R:
install.packages('SAIGEgds', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/abbvie-computationalgenomics/saigegds/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On BioConductor:SAIGEgds-2.7.1(bioc 3.21)SAIGEgds-2.6.0(bioc 3.20)

softwaregeneticsstatisticalmethodgenomewideassociationgdsgwasmixed-modelphewasopenblascpp

6.15 score 7 stars 15 scripts 254 downloads 1 mentions 13 exports 33 dependencies

Last updated 1 months agofrom:1457cdafc4. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 21 2024
R-4.5-win-x86_64NOTENov 21 2024
R-4.5-linux-x86_64NOTEDec 21 2024
R-4.4-win-x86_64NOTENov 21 2024
R-4.4-mac-x86_64NOTEDec 21 2024
R-4.4-mac-aarch64NOTEDec 21 2024
R-4.3-win-x86_64NOTENov 21 2024
R-4.3-mac-x86_64NOTEDec 21 2024
R-4.3-mac-aarch64NOTEDec 21 2024

Exports:glmmHeritabilitypACATpACAT2seqAssocGLMM_ACAT_OseqAssocGLMM_ACAT_VseqAssocGLMM_BurdenseqAssocGLMM_SKATseqAssocGLMM_SPAseqFitDenseGRMseqFitLDpruningseqFitNullGLMM_SPAseqFitSparseGRMseqSAIGE_LoadPval

Dependencies:askpassBiocGenericsBiostringsCompQuadFormcrayoncurlDBIgdsfmtgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangeshttrIRangesjsonlitelatticeMatrixmimeminqamitoolsnumDerivopensslR6RcppRcppArmadilloRcppParallelS4VectorsSeqArraysurveysurvivalsysUCSC.utilsXVector

Scalable Generalized Mixed Models in PheWAS using SAIGEgds

Rendered fromSAIGEgds.Rmdusingknitr::rmarkdownon Dec 21 2024.

Last update: 2023-03-08
Started: 2019-10-14