Package: SAIGEgds 2.7.1
SAIGEgds: Scalable Implementation of Generalized mixed models using GDS files in Phenome-Wide Association Studies
Scalable implementation of generalized mixed models with highly optimized C++ implementation and integration with Genomic Data Structure (GDS) files. It is designed for single variant tests and set-based aggregate tests in large-scale Phenome-wide Association Studies (PheWAS) with millions of variants and samples, controlling for sample structure and case-control imbalance. The implementation is based on the SAIGE R package (v0.45, Zhou et al. 2018 and Zhou et al. 2020), and it is extended to include the state-of-the-art ACAT-O set-based tests. Benchmarks show that SAIGEgds is significantly faster than the SAIGE R package.
Authors:
SAIGEgds_2.7.1.tar.gz
SAIGEgds_2.7.1.zip(r-4.5)SAIGEgds_2.7.1.zip(r-4.4)SAIGEgds_2.7.1.zip(r-4.3)
SAIGEgds_2.7.1.tgz(r-4.4-x86_64)SAIGEgds_2.7.1.tgz(r-4.4-arm64)SAIGEgds_2.7.1.tgz(r-4.3-x86_64)SAIGEgds_2.7.1.tgz(r-4.3-arm64)
SAIGEgds_2.7.1.tar.gz(r-4.5-noble)SAIGEgds_2.7.1.tar.gz(r-4.4-noble)
SAIGEgds.pdf |SAIGEgds.html✨
SAIGEgds/json (API)
NEWS
# Install 'SAIGEgds' in R: |
install.packages('SAIGEgds', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/abbvie-computationalgenomics/saigegds/issues
On BioConductor:SAIGEgds-2.7.1(bioc 3.21)SAIGEgds-2.6.0(bioc 3.20)
softwaregeneticsstatisticalmethodgenomewideassociationgdsgwasmixed-modelphewasopenblascpp
Last updated 1 months agofrom:1457cdafc4. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 21 2024 |
R-4.5-win-x86_64 | NOTE | Nov 21 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 21 2024 |
R-4.4-win-x86_64 | NOTE | Nov 21 2024 |
R-4.4-mac-x86_64 | NOTE | Dec 21 2024 |
R-4.4-mac-aarch64 | NOTE | Dec 21 2024 |
R-4.3-win-x86_64 | NOTE | Nov 21 2024 |
R-4.3-mac-x86_64 | NOTE | Dec 21 2024 |
R-4.3-mac-aarch64 | NOTE | Dec 21 2024 |
Exports:glmmHeritabilitypACATpACAT2seqAssocGLMM_ACAT_OseqAssocGLMM_ACAT_VseqAssocGLMM_BurdenseqAssocGLMM_SKATseqAssocGLMM_SPAseqFitDenseGRMseqFitLDpruningseqFitNullGLMM_SPAseqFitSparseGRMseqSAIGE_LoadPval
Dependencies:askpassBiocGenericsBiostringsCompQuadFormcrayoncurlDBIgdsfmtgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangeshttrIRangesjsonlitelatticeMatrixmimeminqamitoolsnumDerivopensslR6RcppRcppArmadilloRcppParallelS4VectorsSeqArraysurveysurvivalsysUCSC.utilsXVector
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Scalable Implementation of Generalized mixed models in Phenome-Wide Association Studies using GDS files | SAIGEgds-package SAIGEgds |
Heritability estimation | glmmHeritability |
Cauchy Combination Test | pACAT pACAT2 |
ACAT-V tests | seqAssocGLMM_ACAT_O |
ACAT-V tests | seqAssocGLMM_ACAT_V |
Burden tests | seqAssocGLMM_Burden |
SKAT tests | seqAssocGLMM_SKAT |
P-value calculation | seqAssocGLMM_SPA |
Linkage disequilibrium pruning | seqFitLDpruning |
Fit the null model with GRM | seqFitNullGLMM_SPA |
Sparse & dense genetic relationship matrix | seqFitDenseGRM seqFitSparseGRM |
Load the association results | seqSAIGE_LoadPval |