Package: PLSDAbatch 1.3.0
PLSDAbatch: PLSDA-batch
A novel framework to correct for batch effects prior to any downstream analysis in microbiome data based on Projection to Latent Structures Discriminant Analysis. The main method is named “PLSDA-batch”. It first estimates treatment and batch variation with latent components, then subtracts batch-associated components from the data whilst preserving biological variation of interest. PLSDA-batch is highly suitable for microbiome data as it is non-parametric, multivariate and allows for ordination and data visualisation. Combined with centered log-ratio transformation for addressing uneven library sizes and compositional structure, PLSDA-batch addresses all characteristics of microbiome data that existing correction methods have ignored so far. Two other variants are proposed for 1/ unbalanced batch x treatment designs that are commonly encountered in studies with small sample sizes, and for 2/ selection of discriminative variables amongst treatment groups to avoid overfitting in classification problems. These two variants have widened the scope of applicability of PLSDA-batch to different data settings.
Authors:
PLSDAbatch_1.3.0.tar.gz
PLSDAbatch_1.3.0.zip(r-4.5)PLSDAbatch_1.3.0.zip(r-4.4)PLSDAbatch_1.3.0.zip(r-4.3)
PLSDAbatch_1.3.0.tgz(r-4.4-any)PLSDAbatch_1.3.0.tgz(r-4.3-any)
PLSDAbatch_1.3.0.tar.gz(r-4.5-noble)PLSDAbatch_1.3.0.tar.gz(r-4.4-noble)
PLSDAbatch_1.3.0.tgz(r-4.4-emscripten)PLSDAbatch_1.3.0.tgz(r-4.3-emscripten)
PLSDAbatch.pdf |PLSDAbatch.html✨
PLSDAbatch/json (API)
NEWS
# Install 'PLSDAbatch' in R: |
install.packages('PLSDAbatch', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/evayiwenwang/plsdabatch/issues
- AD_data - Anaerobic digestion study
- sponge_data - Sponge _A. aerophoba_ study
On BioConductor:PLSDAbatch-1.3.0(bioc 3.21)PLSDAbatch-1.2.0(bioc 3.20)
statisticalmethoddimensionreductionprincipalcomponentclassificationmicrobiomebatcheffectnormalizationvisualization
Last updated 3 months agofrom:758afa328b. Checks:7 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 30 2024 |
R-4.5-win | OK | Dec 31 2024 |
R-4.5-linux | OK | Dec 30 2024 |
R-4.4-win | OK | Dec 31 2024 |
R-4.4-mac | OK | Dec 30 2024 |
R-4.3-win | OK | Dec 31 2024 |
R-4.3-mac | OK | Dec 30 2024 |
Exports:alignment_scorebox_plotdeflate_mtxdensity_plotlinear_regrespartVar_plotpb_colorpercentile_normpercentileofscorePLSDAPLSDA_batchPreFLScatter_Density
Dependencies:abindapeaskpassbackportsbase64encbayestestRBHBiobaseBiocGenericsBiocManagerBiocParallelBiocStyleBiostringsbookdownbootbroombslibcachemcarcarDatacliclustercodetoolscolorspacecorpcorcorrplotcowplotcpp11crayoncurldatawizardDelayedArrayDerivdigestdoBydplyrellipseevaluatefansifarverfastmapfontawesomeformatRFormulafsfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggpubrggrepelggsciggsignifgluegridExtragsignalgtablehighrhtmltoolshtmlwidgetshttrigraphinsightIRangesisobandjquerylibjsonliteknitrlabelinglambda.rlatticelazyevallifecyclelme4lmerTestmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminqamixOmicsmodelrmunsellnlmenloptrnnetnumDerivopensslpbkrtestperformancepermutepheatmappillarpkgconfigplyrpolynompracmapurrrquantregR6rappdirsrARPACKrbibutilsRColorBrewerRcppRcppEigenRdpackreshape2rglrlangrmarkdownRSpectrarstatixS4ArraysS4VectorssassscalesSingleCellExperimentsnowSparseArraySparseMstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselecttidytreetinytextreeioTreeSummarizedExperimentUCSC.utilsutf8vctrsveganviridisLitewithrxfunXVectoryamlyulab.utils
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Anaerobic digestion study | AD_data |
Alignment Scores for Evaluating the Degree of Mixing Samples | alignment_score |
Box Plot | box_plot |
Matrix Deflation | deflate_mtx |
Density Plot | density_plot |
Linear Regression | linear_regres |
Partitioned Variance Plot | partVar_plot |
Color Palette for PLSDA-batch | pb_color |
Percentile Normalisation | percentile_norm |
Percentile score | percentileofscore |
Partial Least Squares Discriminant Analysis | PLSDA |
Partial Least Squares Discriminant Analysis for Batch Effect Correction | PLSDA_batch |
Prefiltering for Microbiome Data | PreFL |
Principal Component Analysis (PCA) with Density Plots per Component | Scatter_Density |
Sponge _A. aerophoba_ study | sponge_data |