Package: PLSDAbatch 1.3.0

Yiwen (Eva) Wang

PLSDAbatch: PLSDA-batch

A novel framework to correct for batch effects prior to any downstream analysis in microbiome data based on Projection to Latent Structures Discriminant Analysis. The main method is named “PLSDA-batch”. It first estimates treatment and batch variation with latent components, then subtracts batch-associated components from the data whilst preserving biological variation of interest. PLSDA-batch is highly suitable for microbiome data as it is non-parametric, multivariate and allows for ordination and data visualisation. Combined with centered log-ratio transformation for addressing uneven library sizes and compositional structure, PLSDA-batch addresses all characteristics of microbiome data that existing correction methods have ignored so far. Two other variants are proposed for 1/ unbalanced batch x treatment designs that are commonly encountered in studies with small sample sizes, and for 2/ selection of discriminative variables amongst treatment groups to avoid overfitting in classification problems. These two variants have widened the scope of applicability of PLSDA-batch to different data settings.

Authors:Yiwen Wang [aut, cre], Kim-Anh Le Cao [aut]

PLSDAbatch_1.3.0.tar.gz
PLSDAbatch_1.3.0.zip(r-4.5)PLSDAbatch_1.3.0.zip(r-4.4)PLSDAbatch_1.3.0.zip(r-4.3)
PLSDAbatch_1.3.0.tgz(r-4.5-any)PLSDAbatch_1.3.0.tgz(r-4.4-any)PLSDAbatch_1.3.0.tgz(r-4.3-any)
PLSDAbatch_1.3.0.tar.gz(r-4.5-noble)PLSDAbatch_1.3.0.tar.gz(r-4.4-noble)
PLSDAbatch_1.3.0.tgz(r-4.4-emscripten)PLSDAbatch_1.3.0.tgz(r-4.3-emscripten)
PLSDAbatch.pdf |PLSDAbatch.html
PLSDAbatch/json (API)
NEWS

# Install 'PLSDAbatch' in R:
install.packages('PLSDAbatch', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/evayiwenwang/plsdabatch/issues

Datasets:

On BioConductor:PLSDAbatch-1.3.0(bioc 3.21)PLSDAbatch-1.2.0(bioc 3.20)

statisticalmethoddimensionreductionprincipalcomponentclassificationmicrobiomebatcheffectnormalizationvisualization

5.37 score 13 stars 18 scripts 162 downloads 13 exports 153 dependencies

Last updated 4 months agofrom:758afa328b. Checks:7 OK, 1 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 29 2025
R-4.5-winOKJan 29 2025
R-4.5-macWARNINGJan 29 2025
R-4.5-linuxOKJan 29 2025
R-4.4-winOKJan 29 2025
R-4.4-macOKJan 29 2025
R-4.3-winOKJan 29 2025
R-4.3-macOKJan 29 2025

Exports:alignment_scorebox_plotdeflate_mtxdensity_plotlinear_regrespartVar_plotpb_colorpercentile_normpercentileofscorePLSDAPLSDA_batchPreFLScatter_Density

Dependencies:abindapeaskpassbackportsbase64encbayestestRBHBiobaseBiocGenericsBiocManagerBiocParallelBiocStyleBiostringsbookdownbootbroombslibcachemcarcarDatacliclustercodetoolscolorspacecorpcorcorrplotcowplotcpp11crayoncurldatawizardDelayedArrayDerivdigestdoBydplyrellipseevaluatefansifarverfastmapfontawesomeformatRFormulafsfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggpubrggrepelggsciggsignifgluegridExtragsignalgtablehighrhtmltoolshtmlwidgetshttrigraphinsightIRangesisobandjquerylibjsonliteknitrlabelinglambda.rlatticelazyevallifecyclelme4lmerTestmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminqamixOmicsmodelrmunsellnlmenloptrnnetnumDerivopensslpbkrtestperformancepermutepheatmappillarpkgconfigplyrpolynompracmapurrrquantregR6rappdirsrARPACKrbibutilsRColorBrewerRcppRcppEigenRdpackreformulasreshape2rglrlangrmarkdownRSpectrarstatixS4ArraysS4VectorssassscalesSingleCellExperimentsnowSparseArraySparseMstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselecttidytreetinytextreeioTreeSummarizedExperimentUCSC.utilsutf8vctrsveganviridisLitewithrxfunXVectoryamlyulab.utils

PLSDA-batch Vignette

Rendered frombrief_vignette.Rmdusingknitr::rmarkdownon Jan 29 2025.

Last update: 2023-11-13
Started: 2023-04-03