Package: NormalyzerDE 1.25.0
NormalyzerDE: Evaluation of normalization methods and calculation of differential expression analysis statistics
NormalyzerDE provides screening of normalization methods for LC-MS based expression data. It calculates a range of normalized matrices using both existing approaches and a novel time-segmented approach, calculates performance measures and generates an evaluation report. Furthermore, it provides an easy utility for Limma- or ANOVA- based differential expression analysis.
Authors:
NormalyzerDE_1.25.0.tar.gz
NormalyzerDE_1.25.0.zip(r-4.5)NormalyzerDE_1.25.0.zip(r-4.4)NormalyzerDE_1.25.0.zip(r-4.3)
NormalyzerDE_1.25.0.tgz(r-4.4-any)NormalyzerDE_1.25.0.tgz(r-4.3-any)
NormalyzerDE_1.25.0.tar.gz(r-4.5-noble)NormalyzerDE_1.25.0.tar.gz(r-4.4-noble)
NormalyzerDE_1.25.0.tgz(r-4.4-emscripten)NormalyzerDE_1.25.0.tgz(r-4.3-emscripten)
NormalyzerDE.pdf |NormalyzerDE.html✨
NormalyzerDE/json (API)
NEWS
# Install 'NormalyzerDE' in R: |
install.packages('NormalyzerDE', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/computationalproteomics/normalyzerde/issues
On BioConductor:NormalyzerDE-1.25.0(bioc 3.21)NormalyzerDE-1.24.0(bioc 3.20)
normalizationmultiplecomparisonvisualizationbayesianproteomicsmetabolomicsdifferentialexpressionbioconductorbioinformaticslimma
Last updated 20 days agofrom:cfe738a321. Checks:ERROR: 2 WARNING: 5. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | FAIL | Oct 31 2024 |
R-4.5-win | WARNING | Oct 31 2024 |
R-4.5-linux | ERROR | Oct 31 2024 |
R-4.4-win | WARNING | Oct 31 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
R-4.3-win | WARNING | Oct 31 2024 |
R-4.3-mac | WARNING | Oct 31 2024 |
Exports:analyzeNormalizationscalculateContrastsgenerateAnnotatedMatrixgeneratePlotsgenerateStatsReportgetRTNormalizedMatrixgetSmoothedRTNormalizedMatrixgetVerifiedNormalyzerObjectglobalIntensityNormalizationmeanNormalizationmedianNormalizationnormalyzernormalyzerDENormalyzerEvaluationResultsNormalyzerResultsNormalyzerStatisticsnormMethodsperformCyclicLoessNormalizationperformGlobalRLRNormalizationperformQuantileNormalizationperformSMADNormalizationperformVSNNormalizationreduceTechnicalReplicatessetupJobDirsetupRawContrastObjectsetupRawDataObjectsetupTestDatawriteNormalizedDatasets
Dependencies:abindaffyaffyioapeaskpassbackportsBiobaseBiocGenericsBiocManagerbootbroomcarcarDataclicolorspacecowplotcpp11crayoncurlDelayedArrayDerivdigestdoBydplyrfansifarverFormulagenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggforceggplot2gluegtablehttrIRangesisobandjsonlitelabelinglatticelifecyclelimmalme4magrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivopensslpbkrtestpillarpkgconfigpolyclippreprocessCorepurrrquantregR6RColorBrewerRcppRcppEigenrlangS4ArraysS4VectorsscalesSparseArraySparseMstatmodstringistringrSummarizedExperimentsurvivalsyssystemfontstibbletidyrtidyselecttweenrUCSC.utilsutf8vctrsviridisLitevsnwithrXVectorzlibbioc