Title: | Evaluation of normalization methods and calculation of differential expression analysis statistics |
---|---|
Description: | NormalyzerDE provides screening of normalization methods for LC-MS based expression data. It calculates a range of normalized matrices using both existing approaches and a novel time-segmented approach, calculates performance measures and generates an evaluation report. Furthermore, it provides an easy utility for Limma- or ANOVA- based differential expression analysis. |
Authors: | Jakob Willforss |
Maintainer: | Jakob Willforss <[email protected]> |
License: | Artistic-2.0 |
Version: | 1.25.0 |
Built: | 2024-12-31 03:03:09 UTC |
Source: | https://github.com/bioc/NormalyzerDE |
This function prepares an NormalyzerEvaluationResults object containing the evaluation measures CV (coefficient of variance), MAD (median absolute deviation), average variance, significance measures (ANOVA between condition groups) and correlation between replicates.
analyzeNormalizations(nr, categoricalAnova = FALSE)
analyzeNormalizations(nr, categoricalAnova = FALSE)
nr |
Normalyzer results object with calculated results. |
categoricalAnova |
Whether categorical or numerical (ordered) ANOVA should be calculated. |
Normalyzer results with attached evaluation results object.
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normResultsWithEval <- analyzeNormalizations(normResults)
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normResultsWithEval <- analyzeNormalizations(normResults)
Optionally, a batch column can be specified allowing compensation for covariate variation in the statistical model. This is only compatible with a Limma-based statistical analysis.
calculateContrasts( nst, comparisons, condCol, batchCol = NULL, splitter = "-", type = "limma", leastRepCount = 1 ) ## S4 method for signature 'NormalyzerStatistics' calculateContrasts( nst, comparisons, condCol, batchCol = NULL, splitter = "-", type = "limma", leastRepCount = 1 )
calculateContrasts( nst, comparisons, condCol, batchCol = NULL, splitter = "-", type = "limma", leastRepCount = 1 ) ## S4 method for signature 'NormalyzerStatistics' calculateContrasts( nst, comparisons, condCol, batchCol = NULL, splitter = "-", type = "limma", leastRepCount = 1 )
nst |
Results evaluation object. |
comparisons |
String with comparisons for contrasts. |
condCol |
Column name in design matrix containing condition information. |
batchCol |
Column name in design matrix containing batch information. |
splitter |
Character dividing contrast conditions. |
type |
Type of statistical test (Limma or welch). |
leastRepCount |
Least replicates in each group to be retained for contrast calculations |
nst Statistics object with statistical measures calculated
data(example_stat_summarized_experiment) nst <- NormalyzerStatistics(example_stat_summarized_experiment) results <- calculateContrasts(nst, c("1-2", "2-3"), "group") resultsBatch <- calculateContrasts(nst, c("1-2", "2-3"), "group", batchCol="batch")
data(example_stat_summarized_experiment) nst <- NormalyzerStatistics(example_stat_summarized_experiment) results <- calculateContrasts(nst, c("1-2", "2-3"), "group") resultsBatch <- calculateContrasts(nst, c("1-2", "2-3"), "group", batchCol="batch")
Extracts key values (p-value, adjusted p-value, log2-fold change and average expression values) from an NormalyzerStatistics instance and appends these to the annotation- and data-matrices
generateAnnotatedMatrix(nst, prefixSep = "_", compLabels = NULL)
generateAnnotatedMatrix(nst, prefixSep = "_", compLabels = NULL)
nst |
NormalyzerDE statistics object. |
prefixSep |
Character string for separating the prefix names from the statistics suffix |
compLabels |
Vector containing strings to use as prefix for statistical comparisons |
outDf Annotated statistics matrix
data(example_stat_summarized_experiment) statObj <- NormalyzerStatistics(example_stat_summarized_experiment) statObj <- calculateContrasts(statObj, comparisons=c("1-2", "2-3"), condCol="group", type="limma") annotDf <- generateAnnotatedMatrix(statObj)
data(example_stat_summarized_experiment) statObj <- NormalyzerStatistics(example_stat_summarized_experiment) statObj <- calculateContrasts(statObj, comparisons=c("1-2", "2-3"), condCol="group", type="limma") annotDf <- generateAnnotatedMatrix(statObj)
They include:
generatePlots(nr, jobdir, plotRows = 3, plotCols = 4, writeAsPngs = FALSE)
generatePlots(nr, jobdir, plotRows = 3, plotCols = 4, writeAsPngs = FALSE)
nr |
Normalyzer results object. |
jobdir |
Path to output directory for run. |
plotRows |
Number of plot rows. |
plotCols |
Number of plot columns. |
writeAsPngs |
Output the report as PNG-plots instead of a single PDF |
"Total intensity" Barplot showing the summed intensity in each sample for thelog2-transformed data
"Total missing" Barplot showing the number of missing values found in each sample for the log2-tranformed data
Log2-MDS plot: MDS plot where data is reduced to two dimensions allowing inspection of the main global changes in the data
PCV - Intragroup: Mean of intragroup CV of all replicate groups
PMAD - Intragroup: Mean of intragroup median absolute deviation across replicate groups
PEV - Intragroup: Mean of intragroup pooled estimate of variance across the replicate groups
Relative PCV, PMAD and PEV compared to log2: The results from PCV, PMAD and PEV from all normalized data compared to the log2 data
Stable variables plot: 5 analysis of log2 transformed data. Thereafter, global CV of these variables is estimated from different normalized datasets. A plot of global CV of the stable variables from all datsets on the y-axis and PCV-compared to log2 on the x-axis is generated.
CV vs Raw Intensity plots: For the first replicate group in each of the normalized dataset, a plot of PCV of each variable compared to the average intensity of the variable in the replicate group is plotted.
MA plots: Plotted using the plotMA function of the limma package. The first sample in each dataset is plotted against the average of the replicate group that sample belong to.
Scatterplots: The first two samples from each dataset are plotted.
Q-Q plots: QQ-plots are plotted for the first sample in each normalized dataset.
Boxplots: Boxplots for all samples are plotted and colored according to the replicate grouping.
Relative Log Expression (RLE) plots: Relative log expression value plots. Ratio between the expression of the variable and the median expression of this variable across all samples. The samples should be aligned around zero. Any deviation would indicate discrepancies in the data.
Density plots: Density distributions for each sample using the density function. Can capture outliers (if single densities lies far from the others) and see if there is batch effects in the dataset (if for instance there is two clear collections of lines in the data).
MDS plots Multidimensional scaling plot using the cmdscale() function from the stats package. Is often able to show whether replicates group together, and whether there are any clear outliers in the data.
MeanSDplots Displays the standard deviation values against values ordered according to mean. If no dependency on mean is present (as is desired) a flat red line is shown.
Pearson and Spearman correlation Mean of intragroup Pearson and Spearman correlation values for each method.
Dendograms Generated using the hclust function. Data is centered and scaled prior to analysis. Coloring of replicates is done using as.phylo from the ape package.
P-value histograms Histogram plots of p-values after calculating an ANOVA between different condition groups. If no effect is present in the data a flat distribution is expected. If an effect is present a flat distribution is still expected, but with a sharp peak close to zero. If other effects are present it might indicate that the data doesn't support the assumptions of ANOVA, for instance if there are batch effects present in the data.
None
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normResultsWithEval <- analyzeNormalizations(normResults) outputDir <- tempdir() generatePlots(normResultsWithEval, outputDir)
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normResultsWithEval <- analyzeNormalizations(normResults) outputDir <- tempdir() generatePlots(normResultsWithEval, outputDir)
Generate full output report plot document. Plots p-value histograms for each contrast in the NormalyzerStatistics instance and writes these to a PDF report.
generateStatsReport( nst, jobName, jobDir, sigThres = 0.1, sigThresType = "fdr", log2FoldThres = 0, plotRows = 3, plotCols = 4, writeAsPngs = FALSE )
generateStatsReport( nst, jobName, jobDir, sigThres = 0.1, sigThresType = "fdr", log2FoldThres = 0, plotRows = 3, plotCols = 4, writeAsPngs = FALSE )
nst |
NormalyzerDE statistics object. |
jobName |
Name of processing run. |
jobDir |
Path to output directory. |
sigThres |
Significance threshold for indicating as significant |
sigThresType |
Type of significance threshold (FDR or p) |
log2FoldThres |
log2 fold-change required for being counted as significant |
plotRows |
Number of plot rows. |
plotCols |
Number of plot columns. |
writeAsPngs |
Output the report as separate PNG files instead of a single PDF file |
None
data(example_stat_summarized_experiment) statObj <- NormalyzerStatistics(example_stat_summarized_experiment) statObj <- calculateContrasts(statObj, comparisons=c("1-2", "2-3"), condCol="group", type="limma") outputDir <- tempdir() generateStatsReport(statObj, "jobName", outputDir)
data(example_stat_summarized_experiment) statObj <- NormalyzerStatistics(example_stat_summarized_experiment) statObj <- calculateContrasts(statObj, comparisons=c("1-2", "2-3"), condCol="group", type="limma") outputDir <- tempdir() generateStatsReport(statObj, "jobName", outputDir)
The function orders the retention times and steps through them using the supplied step size (in minutes). If smaller than a fixed lower boundary the window is expanded to ensure a minimum amount of data in each normalization step. An offset can be specified which can be used to perform multiple RT-segmentations with partial overlapping windows.
getRTNormalizedMatrix( rawMatrix, retentionTimes, normMethod, stepSizeMinutes = 1, windowMinCount = 100, offset = 0, noLogTransform = FALSE )
getRTNormalizedMatrix( rawMatrix, retentionTimes, normMethod, stepSizeMinutes = 1, windowMinCount = 100, offset = 0, noLogTransform = FALSE )
rawMatrix |
Target matrix to be normalized |
retentionTimes |
Vector of retention times corresponding to rawMatrix |
normMethod |
The normalization method to apply to the time windows |
stepSizeMinutes |
Size of windows to be normalized |
windowMinCount |
Minimum number of values for window to not be expanded. |
offset |
Whether time window should shifted half step size |
noLogTransform |
Don't log-transform the data |
Normalized matrix
data(example_data_small) data(example_design_small) data(example_data_only_values) dataMat <- example_data_only_values retentionTimes <- as.numeric(example_data[, "Average.RT"]) performCyclicLoessNormalization <- function(rawMatrix) { log2Matrix <- log2(rawMatrix) normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast") colnames(normMatrix) <- colnames(rawMatrix) normMatrix } rtNormMat <- getRTNormalizedMatrix(dataMat, retentionTimes, performCyclicLoessNormalization, stepSizeMinutes=1, windowMinCount=100)
data(example_data_small) data(example_design_small) data(example_data_only_values) dataMat <- example_data_only_values retentionTimes <- as.numeric(example_data[, "Average.RT"]) performCyclicLoessNormalization <- function(rawMatrix) { log2Matrix <- log2(rawMatrix) normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast") colnames(normMatrix) <- colnames(rawMatrix) normMatrix } rtNormMat <- getRTNormalizedMatrix(dataMat, retentionTimes, performCyclicLoessNormalization, stepSizeMinutes=1, windowMinCount=100)
Uses the function getRTNormalizedMatrix to generate multiple normalized matrices which are shifted respective to each other and finally merged into a single matrix. This could potentially reduce effect of fluctuations within individual windows.
getSmoothedRTNormalizedMatrix( rawMatrix, retentionTimes, normMethod, stepSizeMinutes, windowShifts = 2, windowMinCount = 100, mergeMethod = "mean", noLogTransform = FALSE )
getSmoothedRTNormalizedMatrix( rawMatrix, retentionTimes, normMethod, stepSizeMinutes, windowShifts = 2, windowMinCount = 100, mergeMethod = "mean", noLogTransform = FALSE )
rawMatrix |
Target matrix to be normalized |
retentionTimes |
Vector of retention times corresponding to rawMatrix |
normMethod |
The normalization method to apply to the time windows |
stepSizeMinutes |
Size of windows to be normalized |
windowShifts |
Number of frame shifts. |
windowMinCount |
Minimum number of features within window. |
mergeMethod |
Layer merging approach. Mean or median. |
noLogTransform |
Don't log transform the input |
Normalized matrix
data(example_data_small) data(example_data_only_values) data(example_design_small) retentionTimes <- as.numeric(example_data[, "Average.RT"]) dataMat <- example_data_only_values performCyclicLoessNormalization <- function(rawMatrix) { log2Matrix <- log2(rawMatrix) normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast") colnames(normMatrix) <- colnames(rawMatrix) normMatrix } rtNormMat <- getSmoothedRTNormalizedMatrix(dataMat, retentionTimes, performCyclicLoessNormalization, stepSizeMinutes=1, windowMinCount=100, windowShifts=2, mergeMethod="median")
data(example_data_small) data(example_data_only_values) data(example_design_small) retentionTimes <- as.numeric(example_data[, "Average.RT"]) dataMat <- example_data_only_values performCyclicLoessNormalization <- function(rawMatrix) { log2Matrix <- log2(rawMatrix) normMatrix <- limma::normalizeCyclicLoess(log2Matrix, method="fast") colnames(normMatrix) <- colnames(rawMatrix) normMatrix } rtNormMat <- getSmoothedRTNormalizedMatrix(dataMat, retentionTimes, performCyclicLoessNormalization, stepSizeMinutes=1, windowMinCount=100, windowShifts=2, mergeMethod="median")
This function performs a number of checks on the input data and provides informative error messages if the data isn't fulfilling the required format. Checks include verifying that the design matrix matches to the data matrix, that the data matrix contains valid numbers and that samples have enough values for analysis
getVerifiedNormalyzerObject( jobName, summarizedExp, threshold = 15, omitSamples = FALSE, requireReplicates = TRUE, quiet = FALSE, noLogTransform = FALSE, tinyRunThres = 50 )
getVerifiedNormalyzerObject( jobName, summarizedExp, threshold = 15, omitSamples = FALSE, requireReplicates = TRUE, quiet = FALSE, noLogTransform = FALSE, tinyRunThres = 50 )
jobName |
Name of ongoing run. |
summarizedExp |
Summarized experiment input object |
threshold |
Minimum number of features. |
omitSamples |
Automatically omit invalid samples from analysis. |
requireReplicates |
Require there to be at least to samples per condition |
quiet |
Don't print output messages during processing |
noLogTransform |
Don't log-transform the provided data |
tinyRunThres |
If less features in run, a limited run is performed |
Normalyzer data object representing verified input data.
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment)
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment)
The normalization divides the intensity of each variable in a sample with the sum of intensities of all variables in the sample and multiplies with the median of sum of intensities of all variables in all samples. The normalized data is then log2-transformed.
globalIntensityNormalization(rawMatrix, noLogTransform = FALSE)
globalIntensityNormalization(rawMatrix, noLogTransform = FALSE)
rawMatrix |
Target matrix to be normalized |
noLogTransform |
Assumes no need for log transformation |
Normalized and log-transformed matrix
data(example_data_only_values_small) normMatrix <- globalIntensityNormalization(example_data_only_values)
data(example_data_only_values_small) normMatrix <- globalIntensityNormalization(example_data_only_values)
General function which allows specifying different types of input data including "proteios", "maxquantpep" (peptide output from MaxQuant) and "maxquantprot" (protein output from MaxQuant) formats.
loadData(dataPath, inputFormat = "default")
loadData(dataPath, inputFormat = "default")
dataPath |
File path to design matrix. |
inputFormat |
If input is given in standard NormalyzerDE format, Proteios format or in MaxQuant protein or peptide format |
rawData Raw data loaded into data frame
## Not run: df <- loadData("data.tsv") ## End(Not run)
## Not run: df <- loadData("data.tsv") ## End(Not run)
Takes a design path, loads the matrix and ensures that the sample column is in character format and that the group column is in factor format.
loadDesign(designPath, sampleCol = "sample", groupCol = "group")
loadDesign(designPath, sampleCol = "sample", groupCol = "group")
designPath |
File path to design matrix. |
sampleCol |
Column name for column containing sample names. |
groupCol |
Column name for column containing condition levels. |
designMatrix Design data loaded into data frame
## Not run: df <- loadDesign("design.tsv") ## End(Not run)
## Not run: df <- loadDesign("design.tsv") ## End(Not run)
Intensity of each variable in a given sample is divided by the mean of sum of intensities of all variables in the sample and then multiplied by the mean of sum of intensities of all variables in all samples. The normalized data is then transformed to log2.
meanNormalization(rawMatrix, noLogTransform = FALSE)
meanNormalization(rawMatrix, noLogTransform = FALSE)
rawMatrix |
Target matrix to be normalized |
noLogTransform |
Assumes no need for log transformation |
Normalized and log-transformed matrix
data(example_data_only_values_small) normMatrix <- meanNormalization(example_data_only_values)
data(example_data_only_values_small) normMatrix <- meanNormalization(example_data_only_values)
Intensity of each variable in a given sample is divided by the median of intensities of all variables in the sample and then multiplied by the mean of median of sum of intensities of all variables in all samples. The normalized data is then log2-transformed.
medianNormalization(rawMatrix, noLogTransform = FALSE)
medianNormalization(rawMatrix, noLogTransform = FALSE)
rawMatrix |
Target matrix to be normalized |
noLogTransform |
Assumes no need for log transformation |
Normalized and log-transformed matrix
data(example_data_only_values_small) normMatrix <- medianNormalization(example_data_only_values)
data(example_data_only_values_small) normMatrix <- medianNormalization(example_data_only_values)
This function is the main execution point for the normalization part of the NormalyzerDE analysis pipeline. When executed it performs the following steps:
normalyzer( jobName, designPath = NULL, dataPath = NULL, experimentObj = NULL, outputDir = ".", forceAllMethods = FALSE, omitLowAbundSamples = FALSE, sampleAbundThres = 5, tinyRunThres = 50, requireReplicates = TRUE, normalizeRetentionTime = TRUE, plotRows = 3, plotCols = 4, zeroToNA = FALSE, sampleColName = "sample", groupColName = "group", inputFormat = "default", skipAnalysis = FALSE, quiet = FALSE, noLogTransform = FALSE, writeReportAsPngs = FALSE, rtStepSizeMinutes = 1, rtWindowMinCount = 100, rtWindowShifts = 1, rtWindowMergeMethod = "mean" )
normalyzer( jobName, designPath = NULL, dataPath = NULL, experimentObj = NULL, outputDir = ".", forceAllMethods = FALSE, omitLowAbundSamples = FALSE, sampleAbundThres = 5, tinyRunThres = 50, requireReplicates = TRUE, normalizeRetentionTime = TRUE, plotRows = 3, plotCols = 4, zeroToNA = FALSE, sampleColName = "sample", groupColName = "group", inputFormat = "default", skipAnalysis = FALSE, quiet = FALSE, noLogTransform = FALSE, writeReportAsPngs = FALSE, rtStepSizeMinutes = 1, rtWindowMinCount = 100, rtWindowShifts = 1, rtWindowMergeMethod = "mean" )
jobName |
Give the current run a name. |
designPath |
Path to file containing design matrix. |
dataPath |
Specify an output directory for generated files. Defaults to current working directory. |
experimentObj |
SummarizedExperiment object, can be provided as input as alternative to 'designPath' and 'dataPath' |
outputDir |
Directory where results folder is created. |
forceAllMethods |
Debugging function. Run all normalizations even if they aren't in the recommended range of number of values |
omitLowAbundSamples |
Automatically remove samples with fewer non-NA values compared to threshold given by sampleAbundThres. Will otherwise stop with error message if such sample is encountered. |
sampleAbundThres |
Threshold for omitting low-abundant samples. Is by default set to 15. |
tinyRunThres |
If total number of features is less than this, a limited run is performed. |
requireReplicates |
Require multiple samples per condition to pass input validation. |
normalizeRetentionTime |
Perform normalizations over retention time. |
plotRows |
Number of plot-rows in output documentation. |
plotCols |
Number of plot-columns in output documentation. |
zeroToNA |
Convert zero values to NA. |
sampleColName |
Column name in design matrix containing sample IDs. |
groupColName |
Column name in design matrix containing condition IDs. |
inputFormat |
Type of input format. |
skipAnalysis |
Only perform normalization steps. |
quiet |
Omit status messages printed during run. |
noLogTransform |
Don't log-transform the input. |
writeReportAsPngs |
Output the evaluation report as PNG files instead of a single PDF |
rtStepSizeMinutes |
Retention time normalization window size. |
rtWindowMinCount |
Minimum number of datapoints in each retention-time segment. |
rtWindowShifts |
Number of layered retention time normalized windows. |
rtWindowMergeMethod |
Merge approach for layered retention time windows. |
1: Loads the data matrix containing expression values and optional annotations, as well as the design matrix containing the experimental setup 2: Performs input data verification to validate that the data is in correct format. This step captures many common formatting errors. It returns an instance of the NormalyzerDataset class representing the unprocessed data. 3: Calculate a range of normalizations for the dataset. The result is provided as a NormalyzerResults object containing the resulting data matrices from each normalization. 4: Analyze the normalizations and generate performance measures for each of the normalized datasets. This result is provided as a NormalyzerEvaluationResults object. 5: Output the matrices containing the normalized datasets to files. 6: Generate visualizations overviewing the performance measures and write them to a PDF report.
None
## Not run: data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") out_dir <- tempdir() normalyzer( jobName="my_jobname", designPath=design_path, dataPath=data_path, outputDir=out_dir) normalyzer( "my_jobname", designMatrix="design.tsv", "data.tsv", outputDir="path/to/output", normalizeRetentionTime=TRUE, retentionTimeWindow=2) normalyzer( "my_jobname", designMatrix="design.tsv", "data.tsv", outputDir="path/to/output", inputFormat="maxquantprot") ## End(Not run)
## Not run: data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") out_dir <- tempdir() normalyzer( jobName="my_jobname", designPath=design_path, dataPath=data_path, outputDir=out_dir) normalyzer( "my_jobname", designMatrix="design.tsv", "data.tsv", outputDir="path/to/output", normalizeRetentionTime=TRUE, retentionTimeWindow=2) normalyzer( "my_jobname", designMatrix="design.tsv", "data.tsv", outputDir="path/to/output", inputFormat="maxquantprot") ## End(Not run)
Performs differential expression analysis on a normalization matrix. This command executes a pipeline processing the data and generates an annotated normalization matrix and a report containing p-value histograms for each of the performed comparisons.
normalyzerDE( jobName, comparisons, designPath = NULL, dataPath = NULL, experimentObj = NULL, outputDir = ".", logTrans = FALSE, type = "limma", sampleCol = "sample", condCol = "group", batchCol = NULL, techRepCol = NULL, leastRepCount = 1, quiet = FALSE, sigThres = 0.1, sigThresType = "fdr", log2FoldThres = 0, writeReportAsPngs = FALSE )
normalyzerDE( jobName, comparisons, designPath = NULL, dataPath = NULL, experimentObj = NULL, outputDir = ".", logTrans = FALSE, type = "limma", sampleCol = "sample", condCol = "group", batchCol = NULL, techRepCol = NULL, leastRepCount = 1, quiet = FALSE, sigThres = 0.1, sigThresType = "fdr", log2FoldThres = 0, writeReportAsPngs = FALSE )
jobName |
Name of job |
comparisons |
Character vector containing target contrasts. If comparing condA with condB, then the vector would be c("condA-condB") |
designPath |
File path to design matrix |
dataPath |
File path to normalized matrix |
experimentObj |
SummarizedExperiment object, can be provided as input as alternative to 'designPath' and 'dataPath' |
outputDir |
Path to output directory |
logTrans |
Log transform the input (needed if providing non-logged input) |
type |
Type of statistical comparison, "limma", "limma_intensity" or "welch", where "limma_intensity" allows the prior to be fit according to intensity rather than using a flat prior |
sampleCol |
Design matrix column header for column containing sample IDs |
condCol |
Design matrix column header for column containing sample conditions |
batchCol |
Provide an optional column for inclusion of possible batch variance in the model |
techRepCol |
Design matrix column header for column containing technical replicates |
leastRepCount |
Minimum required replicate count |
quiet |
Omit status messages printed during run |
sigThres |
Significance threshold use for illustrating significant hits in diagnostic plots |
sigThresType |
Type of significance threshold, "fdr" or "p". "fdr" is strongly recommended (Benjamini-Hochberg corrected p-values) |
log2FoldThres |
Fold-size cutoff for being considered significant in diagnostic plots |
writeReportAsPngs |
Output report as separate PNG files instead of a single PDF |
When executed, it performs the following steps:
1: Read the data and the design matrices into dataframes. 2: Generate an instance of the NormalyzerStatistics class representing the data and their statistical comparisons. 3: Optionally reduce technical replicates in both the data matrix and the design matrix 4: Calculate statistical contrats between supplied groups 5: Generate an annotated version of the original dataframe where columns containing statistical key measures have been added 6: Write the table to file 7: Generate a PDF report displaying p-value histograms for each calculated contrast
None
data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") out_dir <- tempdir() normalyzerDE( jobName="my_jobname", comparisons=c("4-5"), designPath=design_path, dataPath=data_path, outputDir=out_dir, condCol="group")
data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") out_dir <- tempdir() normalyzerDE( jobName="my_jobname", comparisons=c("4-5"), designPath=design_path, dataPath=data_path, outputDir=out_dir, condCol="group")
Contains the resulting information from the processing which subsequently can be used to generate the quality assessment report.
NormalyzerEvaluationResults(nr) NormalyzerEvaluationResults(nr)
NormalyzerEvaluationResults(nr) NormalyzerEvaluationResults(nr)
nr |
NormalyzerResults object |
nds Generated NormalyzerEvaluationResults instance
avgcvmem
Average coefficient of variance per method
avgcvmempdiff
Percentage difference of mean coefficient of variance compared to log2-transformed data
featureCVPerMethod
CV calculated per feature and normalization method.
avgmadmem
Average median absolute deviation
avgmadmempdiff
Percentage difference of median absolute deviation compared to log2-transformed data
avgvarmem
Average variance per method
avgvarmempdiff
Percentage difference of mean variance compared to log2-transformed data
lowVarFeaturesCVs
List of 5 for log2-transformed data
lowVarFeaturesCVsPercDiff
Coefficient of variance for least variable entries
anovaP
ANOVA calculated p-values
repCorPear
Within group Pearson correlations
repCorSpear
Within group Spearman correlations
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normEval <- NormalyzerEvaluationResults(normResults)
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normEval <- NormalyzerEvaluationResults(normResults)
It is linked to a NormalyzerDataset instance representing the raw data which has been processed. After performing evaluation it also links to an instance of NormalyzerEvaluationResults representing the results from the evaluation.
NormalyzerResults(nds) NormalyzerResults(nds)
NormalyzerResults(nds) NormalyzerResults(nds)
nds |
NormalyzerDataset object |
nr Prepared NormalyzerResults object
normalizations
SummarizedExperiment object containing calculated normalization results
nds
Normalyzer dataset representing run data
ner
Normalyzer evaluation results for running extended normalizations
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) emptyNormResults <- NormalyzerResults(normObj)
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) emptyNormResults <- NormalyzerResults(normObj)
Is initialized with an annotation matrix, a data matrix and a design data frame. This object can subsequently be processed to generate statistical values and in turn used to write a full matrix with additional statistical information as well as a graphical report of the comparisons.
NormalyzerStatistics(experimentObj, logTrans = FALSE) NormalyzerStatistics(experimentObj, logTrans = FALSE)
NormalyzerStatistics(experimentObj, logTrans = FALSE) NormalyzerStatistics(experimentObj, logTrans = FALSE)
experimentObj |
Instance of SummarizedExperiment containing matrix and design information as column data |
logTrans |
Whether the input data should be log transformed |
nds Generated NormalyzerStatistics instance
annotMat
Matrix containing annotation information
dataMat
Matrix containing (normalized) expression data
filteredDataMat
Filtered matrix with low-count rows removed
designDf
Data frame containing design conditions
filteringContrast
Vector showing which entries are filtered (due to low count)
pairwiseCompsP
List with P-values for pairwise comparisons
pairwiseCompsFdr
List with FDR-values for pairwise comparisons
pairwiseCompsAve
List with average expression values
pairwiseCompsFold
List with log2 fold-change values for pairwise comparisons
contrasts
Spot for saving vector of last used contrasts
condCol
Column containing last used conditions
batchCol
Column containing last used batch conditions
data(example_stat_summarized_experiment) nst <- NormalyzerStatistics(example_stat_summarized_experiment)
data(example_stat_summarized_experiment) nst <- NormalyzerStatistics(example_stat_summarized_experiment)
Perform normalizations on Normalyzer dataset
normMethods( nds, forceAll = FALSE, normalizeRetentionTime = TRUE, quiet = FALSE, rtStepSizeMinutes = 1, rtWindowMinCount = 100, rtWindowShifts = 1, rtWindowMergeMethod = "mean", noLogTransform = FALSE )
normMethods( nds, forceAll = FALSE, normalizeRetentionTime = TRUE, quiet = FALSE, rtStepSizeMinutes = 1, rtWindowMinCount = 100, rtWindowShifts = 1, rtWindowMergeMethod = "mean", noLogTransform = FALSE )
nds |
Normalyzer dataset object. |
forceAll |
Force all methods to run despite not qualifying for thresholds. |
normalizeRetentionTime |
Perform retention time based normalization methods. |
quiet |
Prevent diagnostic output |
rtStepSizeMinutes |
Retention time normalization window size. |
rtWindowMinCount |
Minimum number of datapoints in each retention-time segment. |
rtWindowShifts |
Number of layered retention time normalized windows. |
rtWindowMergeMethod |
Merge approach for layered retention time windows. |
noLogTransform |
Per default NormalyzerDE performs a log-transformation on the input data. If not needed, specify this option |
Returns Normalyzer results object with performed analyzes assigned as attributes
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj)
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj)
Log2 transformed data is normalized by Loess method using the function "normalizeCyclicLoess". Further information is available for the function "normalizeCyclicLoess" in the Limma package.
performCyclicLoessNormalization(rawMatrix, noLogTransform = FALSE)
performCyclicLoessNormalization(rawMatrix, noLogTransform = FALSE)
rawMatrix |
Target matrix to be normalized |
noLogTransform |
Assumes no need for log transformation |
Normalized matrix
data(example_data_only_values_small) normMatrix <- performCyclicLoessNormalization(example_data_only_values)
data(example_data_only_values_small) normMatrix <- performCyclicLoessNormalization(example_data_only_values)
Log2 transformed data is normalized by robust linear regression using the function "rlm" from the MASS package.
performGlobalRLRNormalization(rawMatrix, noLogTransform = FALSE)
performGlobalRLRNormalization(rawMatrix, noLogTransform = FALSE)
rawMatrix |
Target matrix to be normalized |
noLogTransform |
Assumes no need for log transformation |
Normalized matrix
data(example_data_only_values_small) normMatrix <- performGlobalRLRNormalization(example_data_only_values)
data(example_data_only_values_small) normMatrix <- performGlobalRLRNormalization(example_data_only_values)
It makes the assumption that the data in different samples should originate from an identical distribution. It does this by generating a reference distribution and then scaling the other samples accordingly.
performQuantileNormalization(rawMatrix, noLogTransform = FALSE)
performQuantileNormalization(rawMatrix, noLogTransform = FALSE)
rawMatrix |
Target matrix to be normalized |
noLogTransform |
Assumes no need for log transformation |
Normalized matrix
data(example_data_only_values_small) normMatrix <- performQuantileNormalization(example_data_only_values)
data(example_data_only_values_small) normMatrix <- performQuantileNormalization(example_data_only_values)
Median absolute deviation normalization Normalization subtracts the median and divides the data by the median absolute deviation (MAD).
performSMADNormalization(rawMatrix, noLogTransform = FALSE)
performSMADNormalization(rawMatrix, noLogTransform = FALSE)
rawMatrix |
Target matrix to be normalized |
noLogTransform |
Assumes no need for log transformation |
Normalized matrix
data(example_data_only_values_small) normMatrix <- performSMADNormalization(example_data_only_values)
data(example_data_only_values_small) normMatrix <- performSMADNormalization(example_data_only_values)
The VSN (Variance Stabilizing Normalization) attempts to transform the data in such a way that the variance remains nearly constant over the intensity spectrum
performVSNNormalization(rawMatrix)
performVSNNormalization(rawMatrix)
rawMatrix |
Target matrix to be normalized |
Normalized matrix
data(example_data_only_values_small) normMatrix <- performVSNNormalization(example_data_only_values)
data(example_data_only_values_small) normMatrix <- performVSNNormalization(example_data_only_values)
Collapses sample values into their average. If only one value is present due to NA-values in other technical replicates, then that value is used.
reduceTechnicalReplicates(se, techRepColName, sampleColName)
reduceTechnicalReplicates(se, techRepColName, sampleColName)
se |
Summarized experiment where the assay contains the data to be reduced, and the colData the data frame |
techRepColName |
Technical replicates column name in colData |
sampleColName |
Sample names column name in colData |
Takes a SummarizedExperiment where the data is present as the assay and the colData contains the design conditions. In the design conditions there should be one column with the technical replicate groups and one column containing the sample names
reducedSe Summarized experiment with reduced data
testData <- as.matrix(data.frame( c(1,1,1), c(1,2,1), c(7,7,7), c(7,9,7))) colnames(testData) <- c("a1", "a2", "b1", "b2") designDf <- data.frame( sample=c("a1", "a2", "b1", "b2"), techrep=c("a", "a", "b", "b")) se <- SummarizedExperiment::SummarizedExperiment( assay=testData, colData=designDf ) statObj <- reduceTechnicalReplicates(se, "techrep", "sample")
testData <- as.matrix(data.frame( c(1,1,1), c(1,2,1), c(7,7,7), c(7,9,7))) colnames(testData) <- c("a1", "a2", "b1", "b2") designDf <- data.frame( sample=c("a1", "a2", "b1", "b2"), techrep=c("a", "a", "b", "b")) se <- SummarizedExperiment::SummarizedExperiment( assay=testData, colData=designDf ) statObj <- reduceTechnicalReplicates(se, "techrep", "sample")
Creates a directory at provided path named to the jobname.
setupJobDir(jobName, outputDir)
setupJobDir(jobName, outputDir)
jobName |
Name of the run. |
outputDir |
Path to directory where to create the output directory. |
Path to newly created directory.
setupJobDir("job_name", "path/to/outdir")
setupJobDir("job_name", "path/to/outdir")
Prepare SummarizedExperiment object for statistics data
setupRawContrastObject(dataPath, designPath, sampleColName)
setupRawContrastObject(dataPath, designPath, sampleColName)
dataPath |
Path to raw data matrix |
designPath |
Path to design matrix |
sampleColName |
Name for column in design matrix containing sample names |
experimentObj Prepared instance of SummarizedExperiment
data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") sumExpObj <- setupRawContrastObject(data_path, design_path, "sample")
data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") sumExpObj <- setupRawContrastObject(data_path, design_path, "sample")
Prepare SummarizedExperiment object for raw data to be normalized containing data, design and annotation information
setupRawDataObject( dataPath, designPath, inputFormat = "default", zeroToNA = FALSE, sampleColName = "sample", groupColName = "group" )
setupRawDataObject( dataPath, designPath, inputFormat = "default", zeroToNA = FALSE, sampleColName = "sample", groupColName = "group" )
dataPath |
File path to data matrix. |
designPath |
File path to design matrix. |
inputFormat |
Type of matrix for data, can be either 'default', 'proteios', 'maxquantprot' or 'maxquantpep' |
zeroToNA |
If TRUE zeroes in the data is automatically converted to NA values |
sampleColName |
Column name for column containing sample names |
groupColName |
Column name for column containing condition levels |
experimentObj SummarizedExperiment object loaded with the data
data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") df <- setupRawDataObject(data_path, design_path)
data_path <- system.file(package="NormalyzerDE", "extdata", "tiny_data.tsv") design_path <- system.file(package="NormalyzerDE", "extdata", "tiny_design.tsv") df <- setupRawDataObject(data_path, design_path)
Outputs each of the normalized datasets to the specified directory.
writeNormalizedDatasets( nr, jobdir, includePairwiseComparisons = FALSE, includeCvCol = FALSE, includeAnovaP = FALSE, normSuffix = "-normalized.txt", rawdataName = "submitted_rawdata.txt" )
writeNormalizedDatasets( nr, jobdir, includePairwiseComparisons = FALSE, includeCvCol = FALSE, includeAnovaP = FALSE, normSuffix = "-normalized.txt", rawdataName = "submitted_rawdata.txt" )
nr |
Results object. |
jobdir |
Path to output directory. |
includePairwiseComparisons |
Include p-values for pairwise comparisons. |
includeCvCol |
Include CV column in output. |
includeAnovaP |
Include ANOVA p-value in output. |
normSuffix |
String used to name output together with normalization names. |
rawdataName |
Name of output raw data file. |
None
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normResultsWithEval <- analyzeNormalizations(normResults) outputDir <- tempdir() writeNormalizedDatasets(normResultsWithEval, outputDir)
data(example_summarized_experiment) normObj <- getVerifiedNormalyzerObject("job_name", example_summarized_experiment) normResults <- normMethods(normObj) normResultsWithEval <- analyzeNormalizations(normResults) outputDir <- tempdir() writeNormalizedDatasets(normResultsWithEval, outputDir)