Package: Moonlight2R 1.5.2

Matteo Tiberti

Moonlight2R: Identify oncogenes and tumor suppressor genes from omics data

The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). We present an updated version of the R/bioconductor package called MoonlightR, namely Moonlight2R, which returns a list of candidate driver genes for specific cancer types on the basis of omics data integration. The Moonlight framework contains a primary layer where gene expression data and information about biological processes are integrated to predict genes called oncogenic mediators, divided into putative tumor suppressors and putative oncogenes. This is done through functional enrichment analyses, gene regulatory networks and upstream regulator analyses to score the importance of well-known biological processes with respect to the studied cancer type. By evaluating the effect of the oncogenic mediators on biological processes or through random forests, the primary layer predicts two putative roles for the oncogenic mediators: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As gene expression data alone is not enough to explain the deregulation of the genes, a second layer of evidence is needed. We have automated the integration of a secondary mutational layer through new functionalities in Moonlight2R. These functionalities analyze mutations in the cancer cohort and classifies these into driver and passenger mutations using the driver mutation prediction tool, CScape-somatic. Those oncogenic mediators with at least one driver mutation are retained as the driver genes. As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, Moonlight2R can be used to discover OCGs and TSGs in the same cancer type. This may for instance help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV). In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments. An additional mechanistic layer evaluates if there are mutations affecting the protein stability of the transcription factors (TFs) of the TSGs and OCGs, as that may have an effect on the expression of the genes.

Authors:Mona Nourbakhsh [aut], Astrid Saksager [aut], Nikola Tom [aut], Katrine Meldgård [aut], Anna Melidi [aut], Xi Steven Chen [aut], Antonio Colaprico [aut], Catharina Olsen [aut], Matteo Tiberti [cre, aut], Elena Papaleo [aut]

Moonlight2R_1.5.2.tar.gz
Moonlight2R_1.5.0.zip(r-4.5)Moonlight2R_1.5.0.zip(r-4.4)Moonlight2R_1.5.0.zip(r-4.3)

Moonlight2R_1.5.2.tar.gz(r-4.5-noble)Moonlight2R_1.5.2.tar.gz(r-4.4-noble)
Moonlight2R_1.5.2.tgz(r-4.4-emscripten)Moonlight2R_1.5.0.tgz(r-4.3-emscripten)
Moonlight2R.pdf |Moonlight2R.html
Moonlight2R/json (API)
NEWS

# Install 'Moonlight2R' in R:
install.packages('Moonlight2R', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/elelab/moonlight2r/issues

Datasets:

On BioConductor:Moonlight2R-1.5.1(bioc 3.21)Moonlight2R-1.4.0(bioc 3.20)

dnamethylationdifferentialmethylationgeneregulationgeneexpressionmethylationarraydifferentialexpressionpathwaysnetworksurvivalgenesetenrichmentnetworkenrichment

6.50 score 5 stars 42 scripts 136 downloads 28 exports 212 dependencies

Last updated 4 days agofrom:c6d5495f25. Checks:OK: 4 ERROR: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 19 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxERRORDec 21 2024
R-4.4-winOKOct 31 2024
R-4.3-winOKOct 31 2024

Exports:confidenceDMAFEAgetDataGEOGLSGMAGRNGSEALiftMAFloadMAVISpLPAMAFtoCscapemoonlightplotCircosplotDMAplotFEAplotGMAplotHeatmapplotMetExpplotMoonlightplotMoonlightMetplotNetworkHiveplotURAPRAPRAtoTibbleRunCscape_somaticTFinfluenceURA

Dependencies:abindAnnotationDbiAnnotationHubapeaplotaskpassbase64encBHBiobaseBiocFileCacheBiocGenericsBiocIOBiocManagerBiocParallelBiocVersionbiomaRtBiostringsbitbit64bitopsblobbslibcachemcaToolscirclizeclicliprclueclusterclusterProfilercodetoolscolorspaceComplexHeatmapcowplotcpp11crayoncurldata.tableDBIdbplyrDelayedArraydendextenddigestdoParallelDOSEdoSNOWdownloaderdplyreasyPubMedELMER.dataenrichplotEpiMixEpiMix.dataevaluateExperimentHubfansifarverfastmapfastmatchfgseafilelockfontawesomeforeachformatRfsfutile.loggerfutile.optionsfuzzyjoingenericsGenomeInfoDbGenomeInfoDbDataGenomicAlignmentsGenomicFeaturesGenomicRangesGEOquerygeosphereGetoptLongggforceggfunggnewscaleggplot2ggplotifyggrepelggtangleggtreeGlobalOptionsglueGO.dbGOSemSimgplotsgridExtragridGraphicsgsongtablegtoolshighrHiveRhmshtmltoolshtmlwidgetshttrhttr2igraphimputeIRangesisobanditeratorsjpegjquerylibjsonliteKEGGRESTKernSmoothknitrlabelinglambda.rlatticelazyevallifecyclelimmamagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellnlmeopensslorg.Hs.eg.dbparmigenepatchworkpillarpkgconfigplogrplyrpngpolyclipprettyunitsprogresspurrrqpdfqvalueR.matlabR.methodsS3R.ooR.utilsR6randomForestrappdirsRColorBrewerRcppRcppEigenRCurlreadrrentrezreshape2restfulrrglRhtslibRISmedrjsonrlangrmarkdownRPMMRsamtoolsRSQLitertracklayerrvestS4ArraysS4VectorssassscalesscatterpieselectrseqminershapesnowspSparseArraystatmodstringdiststringistringrSummarizedExperimentsyssystemfontstibbletidyHeatmaptidyrtidyselecttidytreetinytextreeiotweenrtzdbUCSC.utilsutf8vctrsviridisviridisLitevroomwithrxfunXMLxml2xtableXVectoryamlyulab.utilszlibbioc

A workflow to study mechanistic indicators for driver gene prediction with Moonlight

Rendered fromMoonlight2R.Rmdusingknitr::rmarkdownon Dec 19 2024.

Last update: 2024-11-28
Started: 2022-11-21

Readme and manuals

Help Manual

Help pageTopics
confidenceconfidence
Cscape-somatic annotations of TCGA-LUADcscape_somatic_output
Output example from the function Driver Mutation AnalysisdataDMA
Functional enrichment analysisdataFEA
Gene expression data from TCGA-LUADdataFilt
Literature search of driver genesdataGLS
Output example from GMA functiondataGMA
Gene regulatory networkdataGRN
Gene regulatory networkdataGRN_no_noise
Mutation data from TCGA LUADdataMAF
Methylation data matrix from TCGA-LUAD projectdataMethyl
Output example from function Pattern Recognition AnalysisdataPRA
Upstream regulator analysisdataURA
Upstream regulator analysisdataURA_plot
Output example from GMA functionDEG_Methylation_Annotations
Differentially expressed genes's MutationsDEG_Mutations_Annotations
Differentially expressed genesDEGsmatrix
Cancer-related biological processesDiseaseList
DMADMA
Information about genesEAGenes
PromotersEncodePromoters
Output example from GMA functionEpiMix_Results_Regular
FEAFEA
Information on GEO and TCGA dataGEO_TCGAtab
getDataGEOgetDataGEO
GLS This function carries out gene literature search.GLS
GMA This function carries out Gene Methylation AnalysisGMA
Generate networkGRN
GSEAGSEA
Information of known cancer driver genes from COSMICknownDriverGenes
LiftMAFLiftMAF
List of oncogenic mediators of 5 TCGA cancer typeslistMoonlight
loadMAVISploadMAVISp
Level of Consequence: ProteinLOC_protein
Level of Consequence: TranscriptionLOC_transcription
Level of Consequence: TranslationLOC_translation
LPALPA
Sample annotations of TCGA-LUAD projectLUAD_sample_anno
MAFtoCscapeMAFtoCscape
Methylation evidence table to define driver genesMetEvidenceDriver
moonlight pipelinemoonlight
Network of Cancer Genes 7.0NCG
Output example from GMA functionOncogenic_mediators_methylation_summary
Oncogenic Mediators Mutation SummaryOncogenic_mediators_mutation_summary
plotCircosplotCircos
plotDMAplotDMA
plotFEAplotFEA
plotGMA This function plots results of the Gene Methylation Analysis. It visualizes the number of hypo/hyper/dual methylated CpG sites in oncogenic mediators or in a user-supplied gene list. The results are visualized either in a single heatmap or split into different ones which is specified in the function's three modes: split, complete and genelist.plotGMA
plotHeatmapplotHeatmap
plotMetExp This function visualizes results of EpiMix.plotMetExp
plotMoonlightplotMoonlight
plotMoonlightMet This function visualizes the effect of genes on biological processes and total number of hypo/hyper/dual methylated CpG sites in genes.plotMoonlightMet
plotNetworkHive: Hive network plotplotNetworkHive
plotURA: Upstream regulatory analysis heatmap plotplotURA
Pattern Recognition Analysis (PRA)PRA
PRAtoTibblePRAtoTibble
RunCscape_somaticRunCscape_somatic
Information of growing/blocking characteristics of 101 biological processestabGrowBlock
TFinfluenceTFinfluence
URA Upstream Regulator AnalysisURA