Package: MODA 1.33.0
Dong Li
MODA: MODA: MOdule Differential Analysis for weighted gene co-expression network
MODA can be used to estimate and construct condition-specific gene co-expression networks, and identify differentially expressed subnetworks as conserved or condition specific modules which are potentially associated with relevant biological processes.
Authors:
MODA_1.33.0.tar.gz
MODA_1.33.0.zip(r-4.5)MODA_1.33.0.zip(r-4.4)MODA_1.33.0.zip(r-4.3)
MODA_1.33.0.tgz(r-4.4-any)MODA_1.33.0.tgz(r-4.3-any)
MODA_1.33.0.tar.gz(r-4.5-noble)MODA_1.33.0.tar.gz(r-4.4-noble)
MODA_1.33.0.tgz(r-4.4-emscripten)
MODA.pdf |MODA.html✨
MODA/json (API)
NEWS
# Install 'MODA' in R: |
install.packages('MODA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
On BioConductor:MODA-1.33.0(bioc 3.21)MODA-1.32.0(bioc 3.20)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
geneexpressionmicroarraydifferentialexpressionnetwork
Last updated 2 months agofrom:1417781ef8. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 18 2024 |
R-4.5-win | NOTE | Dec 18 2024 |
R-4.5-linux | NOTE | Dec 18 2024 |
R-4.4-win | NOTE | Dec 18 2024 |
R-4.4-mac | NOTE | Dec 18 2024 |
R-4.3-win | NOTE | Dec 18 2024 |
R-4.3-mac | NOTE | Dec 18 2024 |
Exports:CompareAllNetscomparemodulestwonetsModuleFrequencyPartitionDensityPartitionModularityWeightedModulePartitionAmoutainWeightedModulePartitionHierarchicalWeightedModulePartitionLouvainWeightedModulePartitionSpectral
Dependencies:AMOUNTAINAnnotationDbiaskpassbackportsbase64encBiobaseBiocGenericsBiostringsbitbit64blobbslibcachemcheckmatecliclustercodetoolscolorspacecpp11crayoncurldata.tableDBIdigestdoParalleldynamicTreeCutevaluatefansifarverfastclusterfastmapfontawesomeforeachforeignFormulafsgenericsGenomeInfoDbGenomeInfoDbDataggplot2glueGO.dbgridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetshttrigraphimputeIRangesisobanditeratorsjquerylibjsonliteKEGGRESTknitrlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellnlmennetopensslpillarpkgconfigplogrpngpreprocessCoreR6rappdirsRColorBrewerRcpprlangrmarkdownrpartRSQLiterstudioapiS4VectorssassscalesstringistringrsurvivalsystibbletinytexUCSC.utilsutf8vctrsviridisviridisLiteWGCNAwithrxfunXVectoryamlzlibbioc
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Illustration of network comparison | CompareAllNets |
Illustration of two networks comparison | comparemodulestwonets |
datExpr1 | datExpr1 |
datExpr2 | datExpr2 |
Get numeric partition from folder | getPartition |
Modules detection by each condition | MIcondition |
Statistics of all conditions | ModuleFrequency |
Modules rank from recursive communities detection | modulesRank |
Illustration of network comparison by NMI | NMImatrix |
Illustration of partition density | PartitionDensity |
Illustration of modularity density | PartitionModularity |
Modules identification by recursive community detection | recursiveigraph |
Modules detection by AMOUNTAIN algorithm | WeightedModulePartitionAmoutain |
Modules detection by hierarchical clustering | WeightedModulePartitionHierarchical |
Modules detection by Louvain algorithm | WeightedModulePartitionLouvain |
Modules detection by spectral clustering | WeightedModulePartitionSpectral |