Package 'MODA'

Title: MODA: MOdule Differential Analysis for weighted gene co-expression network
Description: MODA can be used to estimate and construct condition-specific gene co-expression networks, and identify differentially expressed subnetworks as conserved or condition specific modules which are potentially associated with relevant biological processes.
Authors: Dong Li, James B. Brown, Luisa Orsini, Zhisong Pan, Guyu Hu and Shan He
Maintainer: Dong Li <[email protected]>
License: GPL (>= 2)
Version: 1.33.0
Built: 2024-11-18 03:40:57 UTC
Source: https://github.com/bioc/MODA

Help Index


Illustration of network comparison

Description

Compare the background network and a set of condition-specific network. Conserved or condition-specific modules are indicated by the plain files, based on the statistics

Usage

CompareAllNets(ResultFolder, intModules, indicator, intconditionModules,
  conditionNames, specificTheta, conservedTheta)

Arguments

ResultFolder

where to store results

intModules

how many modules in the background network

indicator

identifier of current profile, served as a tag in name

intconditionModules

a numeric vector, each of them is the number of modules in each condition-specific network. Or just single number

conditionNames

a character vector, each of them is the name of condition. Or just single name

specificTheta

the threshold to define min(s)+specificTheta, less than which is considered as condition specific module. s is the sums of rows in Jaccard index matrix. See supplementary file.

conservedTheta

The threshold to define max(s)-conservedTheta, greater than which is considered as condition conserved module. s is the sums of rows in Jaccard index matrix. See supplementary file.

Value

None

Author(s)

Dong Li, [email protected]

See Also

WeightedModulePartitionHierarchical, comparemodulestwonets

Examples

data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X'     # indicator for data profile 1
indicator2 = 'Y'      # indicator for data profile 2
specificTheta = 0.1 #threshold to define condition specific modules
conservedTheta = 0.1#threshold to define conserved modules
intModules1 <- WeightedModulePartitionHierarchical(datExpr1,ResultFolder,
indicator1,CuttingCriterion) 
intModules2 <- WeightedModulePartitionHierarchical(datExpr2,ResultFolder,
indicator2,CuttingCriterion) 
CompareAllNets(ResultFolder,intModules1,indicator1,intModules2,indicator2,
specificTheta,conservedTheta)

Illustration of two networks comparison

Description

Compare the background network and a condition-specific network. A Jaccard index is used to measure the similarity of two sets, which represents the similarity of each module pairs from two networks.

Usage

comparemodulestwonets(sourcehead, nm1, nm2, ind1, ind2)

Arguments

sourcehead

prefix of where to store results

nm1

how many modules in the background network

nm2

how many modules in the condition-specific network

ind1

indicator of the background network

ind2

indicator of the condition-specific network

Value

A matrix where each entry is the Jaccard index of corresponding modules from two networks

Author(s)

Dong Li, [email protected]

Examples

data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X'     # indicator for data profile 1
indicator2 = 'Y'      # indicator for data profile 2
intModules1 <- WeightedModulePartitionHierarchical(datExpr1,ResultFolder,
indicator1,CuttingCriterion) 
intModules2 <- WeightedModulePartitionHierarchical(datExpr2,ResultFolder,
indicator2,CuttingCriterion) 
JaccardMatrix <- comparemodulestwonets(ResultFolder,intModules1,intModules2,
paste('/DenseModuleGene_',indicator1,sep=''),
paste('/DenseModuleGene_',indicator2,sep=''))

datExpr1

Description

Synthetic gene expression profile with 20 samples and 500 genes.

Format

A matrix with 20 rows and 500 columns.

Author(s)

Dong Li, [email protected]

Examples

data(synthetic)
## plot the heatmap of the correlation matrix ...
## Not run: heatmap(cor(as.matrix(datExpr1)))

datExpr2

Description

Synthetic gene expression profile with 25 samples and 500 genes.

Format

A matrix with 25 rows and 500 columns.

Author(s)

Dong Li, [email protected]

Examples

data(synthetic)
## plot the heatmap of the correlation matrix ...
## Not run: heatmap(cor(as.matrix(datExpr2)))

Get numeric partition from folder

Description

Get identified partitionAssignment, only for synthetic data where gene names are numbers

Usage

getPartition(ResultFolder)

Arguments

ResultFolder

folder used to save modules

Value

Number of partitions


Modules detection by each condition

Description

Module detection on each condition-specific network, which is constructed from all samples but samples belonging to that condition

Usage

MIcondition(datExpr, conditionNames, ResultFolder, GeneNames, maxsize = 100,
  minsize = 30)

Arguments

datExpr

gene expression profile, rows are samples and columns genes, rowname should contain condition specifier

conditionNames

character vector, each as the condition name

ResultFolder

where to store the clusters

GeneNames

normally the gene official names to replace the colnames of datExpr

maxsize

the maximal nodes allowed in one module

minsize

the minimal nodes allowed in one module

Value

a numeric vector, each entry is the number of modules in condition-specific network

Author(s)

Dong Li, [email protected]


Statistics of all conditions

Description

Statistics of all conditions. To highlight conserved or condition-specific by counting how frequent each module is lablelled as which, and then visualize the frequency by bar plot.

Usage

ModuleFrequency(ResultFolder, intModules, conditionNames, legendNames,
  indicator)

Arguments

ResultFolder

where to store results

intModules

how many modules in the background network

conditionNames

a character vector, each of them is the name

legendNames

a character vector, each of them is the condition name showing up in the frequency barplot of condition. Or just single name

indicator

identifier of current profile, served as a tag in name

Value

None

Author(s)

Dong Li, [email protected]

See Also

WeightedModulePartitionHierarchical, WeightedModulePartitionLouvain, WeightedModulePartitionSpectral, WeightedModulePartitionAmoutain, CompareAllNets


Modules rank from recursive communities detection

Description

Assign the module scores by weights, and rank them from highest to lowest

Usage

modulesRank(foldername, indicator, GeneNames)

Arguments

foldername

folder used to save modules

indicator

normally a specific tag of condition

GeneNames

Gene symbols, sometimes we need them instead of probe ids

Value

The numeber of modules

Author(s)

Dong Li, [email protected]

See Also

recursiveigraph


Illustration of network comparison by NMI

Description

Compare the background network and a set of condition-specific network. returning a pair-wise matrix to show the normalized mutual information between each pair of networks in terms of partitioning

Usage

NMImatrix(ResultFolder, intModules, indicator, intconditionModules,
  conditionNames, Nsize, legendNames = NULL, plt = FALSE)

Arguments

ResultFolder

where to store results

intModules

how many modules in the background network

indicator

identifier of current profile, served as a tag in name

intconditionModules

a numeric vector, each of them is the number of modules in each condition-specific network. Or just single number

conditionNames

a character vector, each of them is the name of condition. Or just single name

Nsize

The number of genes in total

legendNames

a character vector, each of them is the condition name showing up in the similarity matrix plot if applicable

plt

a boolean value to indicate whether plot the similarity matrix

Value

NMI matrix indicating the similarity between each two networks

Author(s)

Dong Li, [email protected]

See Also

CompareAllNets


Illustration of partition density

Description

Calculate the average density of all resulting modules from a partition. The density of each module is defined as the average adjacency of the module genes.

Usage

PartitionDensity(ADJ, PartitionSet)

Arguments

ADJ

gene similarity matrix

PartitionSet

vector indicates the partition label for genes

Value

partition density, defined as average density of all modules

Author(s)

Dong Li, [email protected]

References

Langfelder, Peter, and Steve Horvath. "WGCNA: an R package for weighted correlation network analysis." BMC bioinformatics 9.1 (2008): 1.

Examples

data(synthetic)
ADJ1=abs(cor(datExpr1,use="p"))^10
dissADJ=1-ADJ1
hierADJ=hclust(as.dist(dissADJ), method="average" )
groups <- cutree(hierADJ, h = 0.8)
pDensity <- PartitionDensity(ADJ1,groups)

Illustration of modularity density

Description

Calculate the average modularity of a partition. The modularity of each module is defined from a natural generalization of unweighted case.

Usage

PartitionModularity(ADJ, PartitionSet)

Arguments

ADJ

gene similarity matrix

PartitionSet

vector indicates the partition label for genes

Value

partition modularity, defined as average modularity of all modules

Author(s)

Dong Li, [email protected]

References

Newman, Mark EJ. "Analysis of weighted networks." Physical review E 70.5 (2004): 056131.

Examples

data(synthetic)
ADJ1=abs(cor(datExpr1,use="p"))^10
dissADJ=1-ADJ1
hierADJ=hclust(as.dist(dissADJ), method="average" )
groups <- cutree(hierADJ, h = 0.8)
pDensity <- PartitionModularity(ADJ1,groups)

Modules identification by recursive community detection

Description

Modules detection using igraph's community detection algorithms, when the resulted module is larger than expected, it is further devided by the same program

Usage

recursiveigraph(g, savefile, method = c("fastgreedy", "louvain"),
  maxsize = 200, minsize = 30)

Arguments

g

igraph object, the network to be partitioned

savefile

plain text, used to store module, each line as a module

method

specify the community detection algorithm

maxsize

maximal module size

minsize

minimal module size

Value

None

Author(s)

Dong Li, [email protected]

References

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.


Modules detection by AMOUNTAIN algorithm

Description

Module detection based on the AMOUNTAIN algorithm, which tries to find the optimal module every time and use a modules extraction way

Usage

WeightedModulePartitionAmoutain(datExpr, Nmodule, foldername, indicatename,
  GeneNames, maxsize = 200, minsize = 3, power = 6, tao = 0.2)

Arguments

datExpr

gene expression profile, rows are samples and columns genes

Nmodule

the number of clusters(modules)

foldername

where to store the clusters

indicatename

normally a specific tag of condition

GeneNames

normally the gene official names to replace the colnames of datExpr

maxsize

the maximal nodes allowed in one module

minsize

the minimal nodes allowed in one module

power

the power parameter of WGCNA, W_ij=|cor(x_i,x_j)|^pwr

tao

the threshold to cut the adjacency matrix

Value

None

Author(s)

Dong Li, [email protected]

References

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.

Examples

data(synthetic)
ResultFolder <- 'ForSynthetic' # where middle files are stored
GeneNames <- colnames(datExpr1)
intModules1 <- WeightedModulePartitionAmoutain(datExpr1,5,ResultFolder,'X',
GeneNames,maxsize=100,minsize=50)
truemodule <- c(rep(1,100),rep(2,100),rep(3,100),rep(4,100),rep(5,100))
#mymodule <- getPartition(ResultFolder)
#randIndex(table(mymodule,truemodule),adjust=F)

Modules detection by hierarchical clustering

Description

Module detection based on the optimal cutting height of dendrogram, which is selected to make the average density or modularity of resulting partition maximal. The clustering and visulization function are from WGCNA.

Usage

WeightedModulePartitionHierarchical(datExpr, foldername, indicatename,
  cutmethod = c("Density", "Modularity"), power = 10)

Arguments

datExpr

gene expression profile, rows are samples and columns genes

foldername

where to store the clusters

indicatename

normally a specific tag of condition

cutmethod

cutting the dendrogram based on maximal average Density or Modularity

power

the power parameter of WGCNA, W_ij=|cor(x_i,x_j)|^power

Value

The number of clusters

Author(s)

Dong Li, [email protected]

References

Langfelder, Peter, and Steve Horvath. "WGCNA: an R package for weighted correlation network analysis." BMC bioinformatics 9.1 (2008): 1.

See Also

PartitionDensity

PartitionModularity

Examples

data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X'     # indicator for data profile 1
indicator2 = 'Y'      # indicator for data profile 2
specificTheta = 0.1 #threshold to define condition specific modules
conservedTheta = 0.1#threshold to define conserved modules
intModules1 <- WeightedModulePartitionHierarchical(datExpr1,ResultFolder,
indicator1,CuttingCriterion) 
#mymodule <- getPartition(ResultFolder)
#randIndex(table(mymodule,truemodule),adjust=F)

Modules detection by Louvain algorithm

Description

Module detection based on the Louvain algorithm, which tries to maximize overall modularity of resulting partition.

Usage

WeightedModulePartitionLouvain(datExpr, foldername, indicatename, GeneNames,
  maxsize = 200, minsize = 30, power = 6, tao = 0.2)

Arguments

datExpr

gene expression profile, rows are samples and columns genes

foldername

where to store the clusters

indicatename

normally a specific tag of condition

GeneNames

normally the gene official names to replace the colnames of datExpr

maxsize

the maximal nodes allowed in one module

minsize

the minimal nodes allowed in one module

power

the power parameter of WGCNA, W_ij=|cor(x_i,x_j)|^power

tao

the threshold to cut the adjacency matrix

Value

The number of clusters

Author(s)

Dong Li, [email protected]

References

Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.

Examples

data(synthetic)
ResultFolder <- 'ForSynthetic' # where middle files are stored
indicator <- 'X'     # indicator for data profile 1
GeneNames <- colnames(datExpr1)
intModules1 <- WeightedModulePartitionLouvain(datExpr1,ResultFolder,indicator,GeneNames)
truemodule <- c(rep(1,100),rep(2,100),rep(3,100),rep(4,100),rep(5,100))
#mymodule <- getPartition(ResultFolder)
#randIndex(table(mymodule,truemodule),adjust=F)

Modules detection by spectral clustering

Description

Module detection based on the spectral clustering algorithm, which mainly solve the eigendecomposition on Laplacian matrix

Usage

WeightedModulePartitionSpectral(datExpr, foldername, indicatename, GeneNames,
  power = 6, nn = 10, k = 2)

Arguments

datExpr

gene expression profile, rows are samples and columns genes

foldername

where to store the clusters

indicatename

normally a specific tag of condition

GeneNames

normally the gene official names to replace the colnames of datExpr

power

the power parameter of WGCNA, W_ij=|cor(x_i,x_j)|^power

nn

the number of nearest neighbor, used to construct the affinity matrix

k

the number of clusters(modules)

Value

None

Author(s)

Dong Li, [email protected]

References

Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4 (2007): 395-416.

Examples

data(synthetic)
ResultFolder <- 'ForSynthetic' # where middle files are stored
indicator <- 'X'     # indicator for data profile 1
GeneNames <- colnames(datExpr1)
WeightedModulePartitionSpectral(datExpr1,ResultFolder,indicator,
GeneNames,k=5)
truemodule <- c(rep(1,100),rep(2,100),rep(3,100),rep(4,100),rep(5,100))
#mymodule <- getPartition(ResultFolder)
#randIndex(table(mymodule,truemodule),adjust=F)