Package: MLSeq 2.25.0

Gokmen Zararsiz

MLSeq: Machine Learning Interface for RNA-Seq Data

This package applies several machine learning methods, including SVM, bagSVM, Random Forest and CART to RNA-Seq data.

Authors:Gokmen Zararsiz [aut, cre], Dincer Goksuluk [aut], Selcuk Korkmaz [aut], Vahap Eldem [aut], Izzet Parug Duru [ctb], Ahmet Ozturk [aut], Ahmet Ergun Karaagaoglu [aut, ths]

MLSeq_2.25.0.tar.gz
MLSeq_2.25.0.zip(r-4.5)MLSeq_2.25.0.zip(r-4.4)MLSeq_2.25.0.zip(r-4.3)
MLSeq_2.25.0.tgz(r-4.4-any)MLSeq_2.25.0.tgz(r-4.3-any)
MLSeq_2.25.0.tar.gz(r-4.5-noble)MLSeq_2.25.0.tar.gz(r-4.4-noble)
MLSeq_2.25.0.tgz(r-4.4-emscripten)MLSeq_2.25.0.tgz(r-4.3-emscripten)
MLSeq.pdf |MLSeq.html
MLSeq/json (API)
NEWS

# Install 'MLSeq' in R:
install.packages('MLSeq', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:MLSeq-2.25.0(bioc 3.21)MLSeq-2.24.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

immunooncologysequencingrnaseqclassificationclustering

4.80 score 1 packages 26 scripts 306 downloads 4 mentions 32 exports 134 dependencies

Last updated 2 months agofrom:97e5509afd. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 29 2024
R-4.5-winNOTENov 29 2024
R-4.5-linuxNOTENov 29 2024
R-4.4-winNOTENov 29 2024
R-4.4-macNOTENov 29 2024
R-4.3-winNOTENov 29 2024
R-4.3-macNOTENov 29 2024

Exports:availableMethodsclassifyconfusionMatcontrolcontrol<-discreteControlinputisModifiedisModified<-isUpdatedisUpdated<-metaDatamethodmethod<-modelInfonormalizationnormalization<-plotpredictpredictClassifypreProcessingpreProcessing<-printprintAvailableMethodsrefref<-selectedGenestrainedtrainParameterstransformationupdatevoomControl

Dependencies:abindaskpassBHBiobaseBiocGenericsBiocParallelbitopsbriocallrcaretcaToolsclasscliclockclustercodetoolscolorspacecpp11crayoncurldata.tableDelayedArraydescDESeq2diagramdiffobjdigestdplyre1071edgeRevaluatefansifarverforeachformatRfsfutile.loggerfutile.optionsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2globalsgluegowergtablehardhathttripredIRangesisobanditeratorsjsonliteKernSmoothlabelinglambda.rlatticelavalifecyclelimmalistenvlocfitlubridatemagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimeModelMetricsmunsellnlmennetnumDerivopensslpamrparallellypillarpkgbuildpkgconfigpkgloadplyrpraisepROCprocessxprodlimprogressrproxypspurrrR6RColorBrewerRcppRcppArmadillorecipesreshape2rlangrpartrprojrootS4ArraysS4VectorsscalesshapesnowSparseArraySQUAREMsSeqstatmodstringistringrSummarizedExperimentsurvivalsystestthattibbletidyrtidyselecttimechangetimeDatetzdbUCSC.utilsutf8vctrsVennDiagramviridisLitewaldowithrxtableXVectorzlibbioc

Beginner's guide to the "MLSeq" package

Rendered fromMLSeq.Rnwusingknitr::knitron Nov 29 2024.

Last update: 2021-08-14
Started: 2014-03-20

Readme and manuals

Help Manual

Help pageTopics
Machine learning interface for RNA-Seq dataMLSeq-package
Available classification/regression methods in 'MLSeq'Available-classifiers availableMethods printAvailableMethods
Cervical cancer datacervical
Fitting classification models to sequencing dataclassify
Accessors for the 'confusionMat' slot.confusionMat confusionMat,MLSeq-method confusionMat,MLSeqModelInfo-method
Accessors for the 'control' slot.control control,MLSeq-method control<- control<-,MLSeq,list-method
'discrete.train' objectdiscrete.train-class
Define controlling parameters for discrete classifiers (NBLDA and PLDA)discreteControl
Accessors for the 'inputObject' slot of an 'MLSeq' objectinput input,MLSeq-method
Checks if MLSeq object is updated/modified or not.isModified isModified,MLSeq-method isModified<- isModified<-,MLSeq,logical-method isUpdated isUpdated,MLSeq-method isUpdated<- isUpdated<-,MLSeq,logical-method
Accessors for the 'metaData' slot of an 'MLSeq' objectmetaData metaData,MLSeq-method
Accessors for the 'method'.method method,MLSeq-method method,MLSeqModelInfo-method method<- method<-,MLSeq,character-method
'MLSeq' objectMLSeq-class
'MLSeqMetaData' objectMLSeqMetaData-class
'MLSeqModelInfo' objectMLSeqModelInfo-class
Accessors for the 'modelInfo' slot of an 'MLSeq' objectmodelInfo modelInfo,MLSeq-method
Accessors for the 'normalization' slot.normalization normalization,MLSeq-method normalization,MLSeqModelInfo-method normalization<- normalization<-,MLSeq,character-method
Plot accuracy results from 'MLSeq' objectplot plot,MLSeq,ANY-method plot.MLSeq
Extract predictions from 'classify()' objectpredict predict,MLSeq-method predict.MLSeq predictClassify
Accessors for the 'preProcessing' slot of an 'MLSeq' objectpreProcessing preProcessing,MLSeq-method preProcessing<- preProcessing<-,MLSeq,character-method
Print method for confusion matrixprint,confMat-method print.confMat
Accessors for the 'ref' slot.ref ref,MLSeq-method ref,MLSeqModelInfo-method ref<- ref<-,MLSeq,character-method
Accessors for the 'selectedGenes'.selectedGenes selectedGenes,MLSeq-method
Show method for MLSeq objectsshow show,discrete.train-method show,MLSeq-method show,MLSeqMetaData-method show,MLSeqModelInfo-method show,voom.train-method show.MLSeq
Accessors for the 'trainedModel' slot.trained trained,MLSeq-method trained,MLSeqModelInfo-method
Accessors for the 'trainParameters' slot.trainParameters trainParameters,MLSeq-method trainParameters,MLSeqModelInfo-method
Accessors for the 'transformation' slot.transformation transformation,MLSeq-method transformation,MLSeqModelInfo-method
Update 'MLSeq' objects returnd from 'classify()'update update,MLSeq-method update.MLSeq
'voom.train' objectvoom.train-class
Define controlling parameters for voom-based classifiersvoomControl