Package: MLSeq 2.25.0
MLSeq: Machine Learning Interface for RNA-Seq Data
This package applies several machine learning methods, including SVM, bagSVM, Random Forest and CART to RNA-Seq data.
Authors:
MLSeq_2.25.0.tar.gz
MLSeq_2.25.0.zip(r-4.5)MLSeq_2.25.0.zip(r-4.4)MLSeq_2.25.0.zip(r-4.3)
MLSeq_2.25.0.tgz(r-4.4-any)MLSeq_2.25.0.tgz(r-4.3-any)
MLSeq_2.25.0.tar.gz(r-4.5-noble)MLSeq_2.25.0.tar.gz(r-4.4-noble)
MLSeq_2.25.0.tgz(r-4.4-emscripten)MLSeq_2.25.0.tgz(r-4.3-emscripten)
MLSeq.pdf |MLSeq.html✨
MLSeq/json (API)
NEWS
# Install 'MLSeq' in R: |
install.packages('MLSeq', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
- cervical - Cervical cancer data
On BioConductor:MLSeq-2.23.0(bioc 3.20)MLSeq-2.22.0(bioc 3.19)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
immunooncologysequencingrnaseqclassificationclustering
Last updated 18 days agofrom:97e5509afd. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 30 2024 |
R-4.5-win | NOTE | Oct 31 2024 |
R-4.5-linux | NOTE | Oct 30 2024 |
R-4.4-win | NOTE | Oct 31 2024 |
R-4.4-mac | NOTE | Oct 31 2024 |
R-4.3-win | NOTE | Oct 31 2024 |
R-4.3-mac | NOTE | Oct 31 2024 |
Exports:availableMethodsclassifyconfusionMatcontrolcontrol<-discreteControlinputisModifiedisModified<-isUpdatedisUpdated<-metaDatamethodmethod<-modelInfonormalizationnormalization<-plotpredictpredictClassifypreProcessingpreProcessing<-printprintAvailableMethodsrefref<-selectedGenestrainedtrainParameterstransformationupdatevoomControl
Dependencies:abindaskpassBHBiobaseBiocGenericsBiocParallelbitopsbriocallrcaretcaToolsclasscliclockclustercodetoolscolorspacecpp11crayoncurldata.tableDelayedArraydescDESeq2diagramdiffobjdigestdplyre1071edgeRevaluatefansifarverforeachformatRfsfutile.loggerfutile.optionsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2globalsgluegowergtablehardhathttripredIRangesisobanditeratorsjsonliteKernSmoothlabelinglambda.rlatticelavalifecyclelimmalistenvlocfitlubridatemagrittrMASSMatrixMatrixGenericsmatrixStatsmgcvmimeModelMetricsmunsellnlmennetnumDerivopensslpamrparallellypillarpkgbuildpkgconfigpkgloadplyrpraisepROCprocessxprodlimprogressrproxypspurrrR6RColorBrewerRcppRcppArmadillorecipesrematch2reshape2rlangrpartrprojrootS4ArraysS4VectorsscalesshapesnowSparseArraySQUAREMsSeqstatmodstringistringrSummarizedExperimentsurvivalsystestthattibbletidyrtidyselecttimechangetimeDatetzdbUCSC.utilsutf8vctrsVennDiagramviridisLitewaldowithrxtableXVectorzlibbioc
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Machine learning interface for RNA-Seq data | MLSeq-package |
Available classification/regression methods in 'MLSeq' | Available-classifiers availableMethods printAvailableMethods |
Cervical cancer data | cervical |
Fitting classification models to sequencing data | classify |
Accessors for the 'confusionMat' slot. | confusionMat confusionMat,MLSeq-method confusionMat,MLSeqModelInfo-method |
Accessors for the 'control' slot. | control control,MLSeq-method control<- control<-,MLSeq,list-method |
'discrete.train' object | discrete.train-class |
Define controlling parameters for discrete classifiers (NBLDA and PLDA) | discreteControl |
Accessors for the 'inputObject' slot of an 'MLSeq' object | input input,MLSeq-method |
Checks if MLSeq object is updated/modified or not. | isModified isModified,MLSeq-method isModified<- isModified<-,MLSeq,logical-method isUpdated isUpdated,MLSeq-method isUpdated<- isUpdated<-,MLSeq,logical-method |
Accessors for the 'metaData' slot of an 'MLSeq' object | metaData metaData,MLSeq-method |
Accessors for the 'method'. | method method,MLSeq-method method,MLSeqModelInfo-method method<- method<-,MLSeq,character-method |
'MLSeq' object | MLSeq-class |
'MLSeqMetaData' object | MLSeqMetaData-class |
'MLSeqModelInfo' object | MLSeqModelInfo-class |
Accessors for the 'modelInfo' slot of an 'MLSeq' object | modelInfo modelInfo,MLSeq-method |
Accessors for the 'normalization' slot. | normalization normalization,MLSeq-method normalization,MLSeqModelInfo-method normalization<- normalization<-,MLSeq,character-method |
Plot accuracy results from 'MLSeq' object | plot plot,MLSeq,ANY-method plot.MLSeq |
Extract predictions from 'classify()' object | predict predict,MLSeq-method predict.MLSeq predictClassify |
Accessors for the 'preProcessing' slot of an 'MLSeq' object | preProcessing preProcessing,MLSeq-method preProcessing<- preProcessing<-,MLSeq,character-method |
Print method for confusion matrix | print,confMat-method print.confMat |
Accessors for the 'ref' slot. | ref ref,MLSeq-method ref,MLSeqModelInfo-method ref<- ref<-,MLSeq,character-method |
Accessors for the 'selectedGenes'. | selectedGenes selectedGenes,MLSeq-method |
Show method for MLSeq objects | show show,discrete.train-method show,MLSeq-method show,MLSeqMetaData-method show,MLSeqModelInfo-method show,voom.train-method show.MLSeq |
Accessors for the 'trainedModel' slot. | trained trained,MLSeq-method trained,MLSeqModelInfo-method |
Accessors for the 'trainParameters' slot. | trainParameters trainParameters,MLSeq-method trainParameters,MLSeqModelInfo-method |
Accessors for the 'transformation' slot. | transformation transformation,MLSeq-method transformation,MLSeqModelInfo-method |
Update 'MLSeq' objects returnd from 'classify()' | update update,MLSeq-method update.MLSeq |
'voom.train' object | voom.train-class |
Define controlling parameters for voom-based classifiers | voomControl |