Package: GWENA 1.17.0
GWENA: Pipeline for augmented co-expression analysis
The development of high-throughput sequencing led to increased use of co-expression analysis to go beyong single feature (i.e. gene) focus. We propose GWENA (Gene Whole co-Expression Network Analysis) , a tool designed to perform gene co-expression network analysis and explore the results in a single pipeline. It includes functional enrichment of modules of co-expressed genes, phenotypcal association, topological analysis and comparison of networks configuration between conditions.
Authors:
GWENA_1.17.0.tar.gz
GWENA_1.17.0.zip(r-4.5)GWENA_1.17.0.zip(r-4.4)GWENA_1.17.0.zip(r-4.3)
GWENA_1.17.0.tgz(r-4.4-any)GWENA_1.17.0.tgz(r-4.3-any)
GWENA_1.17.0.tar.gz(r-4.5-noble)GWENA_1.17.0.tar.gz(r-4.4-noble)
GWENA_1.17.0.tgz(r-4.4-emscripten)GWENA_1.17.0.tgz(r-4.3-emscripten)
GWENA.pdf |GWENA.html✨
GWENA/json (API)
# Install 'GWENA' in R: |
install.packages('GWENA', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/kumquatum/gwena/issues
- gtex_expr - Transcriptomic muscle data from GTEx consorsium RNA-seq data
- gtex_traits - Traits data linked to samples in transcriptomic data from GTEx
- kuehne_expr - Transcriptomic data from the Kuehne et al. publication
- kuehne_traits - Traits data linked to samples in transcriptomic data from the Kuehne et al. publication
On BioConductor:GWENA-1.17.0(bioc 3.21)GWENA-1.16.0(bioc 3.20)
softwaregeneexpressionnetworkclusteringgraphandnetworkgenesetenrichmentpathwaysvisualizationrnaseqtranscriptomicsmrnamicroarraymicroarraynetworkenrichmentsequencinggoco-expressionenrichment-analysisgenenetwork-analysispipeline
Last updated 23 days agofrom:19342a3796. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 14 2024 |
R-4.5-win | WARNING | Nov 14 2024 |
R-4.5-linux | WARNING | Nov 14 2024 |
R-4.4-win | WARNING | Nov 14 2024 |
R-4.4-mac | WARNING | Nov 14 2024 |
R-4.3-win | WARNING | Nov 14 2024 |
R-4.3-mac | WARNING | Nov 14 2024 |
Exports:associate_phenotypebio_enrichbuild_graph_from_sq_matbuild_netcompare_conditionsdetect_modulesfilter_low_varfilter_RNA_seqget_fit.corget_fit.exprget_hub_degreeget_hub_genesget_hub_high_coget_hub_kleinbergget_sub_clustersis_data_expris_gostis_moduleis_networkjoin_gostplot_comparison_statsplot_enrichmentplot_expression_profilesplot_moduleplot_modules_mergeplot_modules_phenotypez_summary
Dependencies:abindAnnotationDbiaskpassbackportsbase64encBHBiobaseBiocGenericsBiostringsbitbit64bitopsblobbslibcachemcheckmatecliclustercodetoolscolorspacecpp11crayoncrosstalkcurldata.tableDBIDelayedArraydigestdoParalleldplyrdynamicTreeCutevaluatefansifarverfastclusterfastmapfontawesomeforeachforeignFormulafsgenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2glueGO.dbgprofiler2gridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetshttrigraphimputeIRangesisobanditeratorsjquerylibjsonliteKEGGRESTknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixMatrixGenericsmatrixStatsmemoisemgcvmimemunsellNetRepnlmennetopensslpillarpkgconfigplogrplotlypngpreprocessCorepromisespurrrR6rappdirsRColorBrewerRcppRcppArmadilloRCurlRhpcBLASctlrlangrlistrmarkdownrpartRSQLiterstudioapiS4ArraysS4VectorssassscalesSparseArraystatmodstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselecttinytexUCSC.utilsutf8vctrsviridisviridisLiteWGCNAwithrxfunXMLXVectoryamlzlibbioc