Package: ClusterSignificance 1.35.0
ClusterSignificance: The ClusterSignificance package provides tools to assess if class clusters in dimensionality reduced data representations have a separation different from permuted data
The ClusterSignificance package provides tools to assess if class clusters in dimensionality reduced data representations have a separation different from permuted data. The term class clusters here refers to, clusters of points representing known classes in the data. This is particularly useful to determine if a subset of the variables, e.g. genes in a specific pathway, alone can separate samples into these established classes. ClusterSignificance accomplishes this by, projecting all points onto a one dimensional line. Cluster separations are then scored and the probability of the seen separation being due to chance is evaluated using a permutation method.
Authors:
ClusterSignificance_1.35.0.tar.gz
ClusterSignificance_1.35.0.zip(r-4.5)ClusterSignificance_1.35.0.zip(r-4.4)ClusterSignificance_1.35.0.zip(r-4.3)
ClusterSignificance_1.35.0.tgz(r-4.4-any)ClusterSignificance_1.35.0.tgz(r-4.3-any)
ClusterSignificance_1.35.0.tar.gz(r-4.5-noble)ClusterSignificance_1.35.0.tar.gz(r-4.4-noble)
ClusterSignificance_1.35.0.tgz(r-4.4-emscripten)ClusterSignificance_1.35.0.tgz(r-4.3-emscripten)
ClusterSignificance.pdf |ClusterSignificance.html✨
ClusterSignificance/json (API)
NEWS
# Install 'ClusterSignificance' in R: |
install.packages('ClusterSignificance', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jasonserviss/clustersignificance/issues
On BioConductor:ClusterSignificance-1.35.0(bioc 3.21)ClusterSignificance-1.34.0(bioc 3.20)
clusteringclassificationprincipalcomponentstatisticalmethod
Last updated 3 months agofrom:4f0c989490. Checks:7 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Dec 25 2024 |
R-4.5-win | OK | Dec 25 2024 |
R-4.5-linux | OK | Dec 25 2024 |
R-4.4-win | OK | Dec 25 2024 |
R-4.4-mac | OK | Dec 25 2024 |
R-4.3-win | OK | Dec 25 2024 |
R-4.3-mac | OK | Dec 25 2024 |
Exports:classifyconf.intgetDatainitializemlppcppermuteplotpvalueshow
Dependencies:pracmaprincurveRColorBrewerRcppscatterplot3d
Readme and manuals
Help Manual
Help page | Topics |
---|---|
The ClusterSignificance package provides tools to assess if clusters have a separation different from random or permuted data. | ClusterSignificance-package ClusterSignificance |
Classification of the one dimensional points in a Pcp or Mlp object. | .ClassifiedPoints ClassifiedPoints ClassifiedPoints-class classify classify,Mlp-method classify,Pcp-method getData,ClassifiedPoints-method initialize,ClassifiedPoints-method plot,ClassifiedPoints,missing-method show,ClassifiedPoints-method |
Projection of points into one dimension. | .Mlp getData,Mlp-method initialize,Mlp-method Mlp mlp mlp,matrix-method Mlp-class plot,Mlp,missing-method show,Mlp-method |
Simulated data used to demonstrate the Mlp method. | mlpMatrix |
Projection of points into one dimension. | .Pcp getData getData,Pcp-method initialize,Pcp-method Pcp pcp pcp,matrix-method Pcp-class plot,Pcp,missing-method show,Pcp-method |
Simulated data used to demonstrate the Pcp method. | pcpMatrix |
Permutation test | .PermutationResults c,PermutationResults-method conf.int conf.int,PermutationResults-method getData,PermutationResults-method initialize,PermutationResults-method PermutationResults-class permute permute,matrix-method plot,PermutationResults,missing-method pvalue pvalue,PermutationResults-method show,PermutationResults-method |