Package: ClusterSignificance 1.35.0

Jason T Serviss

ClusterSignificance: The ClusterSignificance package provides tools to assess if class clusters in dimensionality reduced data representations have a separation different from permuted data

The ClusterSignificance package provides tools to assess if class clusters in dimensionality reduced data representations have a separation different from permuted data. The term class clusters here refers to, clusters of points representing known classes in the data. This is particularly useful to determine if a subset of the variables, e.g. genes in a specific pathway, alone can separate samples into these established classes. ClusterSignificance accomplishes this by, projecting all points onto a one dimensional line. Cluster separations are then scored and the probability of the seen separation being due to chance is evaluated using a permutation method.

Authors:Jason T. Serviss [aut, cre], Jesper R. Gadin [aut]

ClusterSignificance_1.35.0.tar.gz
ClusterSignificance_1.35.0.zip(r-4.5)ClusterSignificance_1.35.0.zip(r-4.4)ClusterSignificance_1.35.0.zip(r-4.3)
ClusterSignificance_1.35.0.tgz(r-4.4-any)ClusterSignificance_1.35.0.tgz(r-4.3-any)
ClusterSignificance_1.35.0.tar.gz(r-4.5-noble)ClusterSignificance_1.35.0.tar.gz(r-4.4-noble)
ClusterSignificance_1.35.0.tgz(r-4.4-emscripten)ClusterSignificance_1.35.0.tgz(r-4.3-emscripten)
ClusterSignificance.pdf |ClusterSignificance.html
ClusterSignificance/json (API)
NEWS

# Install 'ClusterSignificance' in R:
install.packages('ClusterSignificance', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jasonserviss/clustersignificance/issues

Datasets:
  • mlpMatrix - Simulated data used to demonstrate the Mlp method.
  • pcpMatrix - Simulated data used to demonstrate the Pcp method.

On BioConductor:ClusterSignificance-1.35.0(bioc 3.21)ClusterSignificance-1.34.0(bioc 3.20)

clusteringclassificationprincipalcomponentstatisticalmethod

4.78 score 4 scripts 187 downloads 2 mentions 10 exports 5 dependencies

Last updated 3 months agofrom:4f0c989490. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKDec 25 2024
R-4.5-winOKDec 25 2024
R-4.5-linuxOKDec 25 2024
R-4.4-winOKDec 25 2024
R-4.4-macOKDec 25 2024
R-4.3-winOKDec 25 2024
R-4.3-macOKDec 25 2024

Exports:classifyconf.intgetDatainitializemlppcppermuteplotpvalueshow

Dependencies:pracmaprincurveRColorBrewerRcppscatterplot3d

ClusterSignificance Vignette

Rendered fromClusterSignificance-vignette.Rmdusingknitr::rmarkdownon Dec 25 2024.

Last update: 2018-07-16
Started: 2016-04-06

Readme and manuals

Help Manual

Help pageTopics
The ClusterSignificance package provides tools to assess if clusters have a separation different from random or permuted data.ClusterSignificance-package ClusterSignificance
Classification of the one dimensional points in a Pcp or Mlp object..ClassifiedPoints ClassifiedPoints ClassifiedPoints-class classify classify,Mlp-method classify,Pcp-method getData,ClassifiedPoints-method initialize,ClassifiedPoints-method plot,ClassifiedPoints,missing-method show,ClassifiedPoints-method
Projection of points into one dimension..Mlp getData,Mlp-method initialize,Mlp-method Mlp mlp mlp,matrix-method Mlp-class plot,Mlp,missing-method show,Mlp-method
Simulated data used to demonstrate the Mlp method.mlpMatrix
Projection of points into one dimension..Pcp getData getData,Pcp-method initialize,Pcp-method Pcp pcp pcp,matrix-method Pcp-class plot,Pcp,missing-method show,Pcp-method
Simulated data used to demonstrate the Pcp method.pcpMatrix
Permutation test.PermutationResults c,PermutationResults-method conf.int conf.int,PermutationResults-method getData,PermutationResults-method initialize,PermutationResults-method PermutationResults-class permute permute,matrix-method plot,PermutationResults,missing-method pvalue pvalue,PermutationResults-method show,PermutationResults-method