Package: ClassifyR 3.11.4

Dario Strbenac

ClassifyR: A framework for cross-validated classification problems, with applications to differential variability and differential distribution testing

The software formalises a framework for classification and survival model evaluation in R. There are four stages; Data transformation, feature selection, model training, and prediction. The requirements of variable types and variable order are fixed, but specialised variables for functions can also be provided. The framework is wrapped in a driver loop that reproducibly carries out a number of cross-validation schemes. Functions for differential mean, differential variability, and differential distribution are included. Additional functions may be developed by the user, by creating an interface to the framework.

Authors:Dario Strbenac [aut, cre], Ellis Patrick [aut], Sourish Iyengar [aut], Harry Robertson [aut], Andy Tran [aut], John Ormerod [aut], Graham Mann [aut], Jean Yang [aut]

ClassifyR_3.11.4.tar.gz
ClassifyR_3.11.4.zip(r-4.5)ClassifyR_3.11.4.zip(r-4.4)ClassifyR_3.11.4.zip(r-4.3)
ClassifyR_3.11.4.tgz(r-4.4-x86_64)ClassifyR_3.11.4.tgz(r-4.4-arm64)ClassifyR_3.11.4.tgz(r-4.3-x86_64)ClassifyR_3.11.4.tgz(r-4.3-arm64)
ClassifyR_3.11.4.tar.gz(r-4.5-noble)ClassifyR_3.11.4.tar.gz(r-4.4-noble)
ClassifyR_3.11.4.tgz(r-4.4-emscripten)ClassifyR_3.11.4.tgz(r-4.3-emscripten)
ClassifyR.pdf |ClassifyR.html
ClassifyR/json (API)
NEWS

# Install 'ClassifyR' in R:
install.packages('ClassifyR', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sydneybiox/classifyr/issues

Pkgdown:https://sydneybiox.github.io

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On BioConductor:ClassifyR-3.11.3(bioc 3.21)ClassifyR-3.10.0(bioc 3.20)

classificationsurvivalcpp

8.22 score 5 stars 3 packages 44 scripts 574 downloads 1 mentions 48 exports 123 dependencies

Last updated 22 hours agofrom:c1585acb96. Checks:OK: 1 NOTE: 4 WARNING: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 07 2024
R-4.5-win-x86_64NOTEDec 07 2024
R-4.5-linux-x86_64NOTEDec 07 2024
R-4.4-win-x86_64NOTEDec 07 2024
R-4.4-mac-x86_64WARNINGDec 07 2024
R-4.4-mac-aarch64WARNINGDec 07 2024
R-4.3-win-x86_64NOTEDec 07 2024
R-4.3-mac-x86_64WARNINGDec 07 2024
R-4.3-mac-aarch64WARNINGDec 07 2024

Exports:actualOutcomeallFeatureNamesavailablebubblePlotcalcCostsAndPerformancecalcCVperformancecalcExternalPerformancechosenFeatureNamesClassifyResultcolCoxTestscrissCrossPlotcrissCrossValidatecrossValidateCrossValParamsdistributionedgesToHubNetworksFeatureSetCollectionfeatureSetSummaryfinalModelflowchartinteractorDifferencesModellingParamsmodelsperformanceperformancePlotperformanceTableplotFeatureClassesprecisionPathwaysPredictprecisionPathwaysTrainpredictionsPredictParamsprepareDatarankingPlotROCplotrunTestrunTestssampleNamessamplesMetricMapsamplesSplitsselectionPlotSelectParamsshowsplitsTestInfostrataPlottotalPredictionsTrainParamsTransformParamstunedParameters

Dependencies:abindannotateAnnotationDbiaskpassbackportsBHBiobaseBiocBaseUtilsBiocGenericsBiocParallelBiostringsbitbit64blobbootbroomcachemcarcarDataclicodetoolscolorspacecorrplotcowplotcpp11crayoncurlDBIDelayedArrayDerivdoBydplyrfansifarverfastmapformatRFormulafutile.loggerfutile.optionsgenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggpubrggrepelggsciggsignifggupsetgluegridExtragtablehttrIRangesisobandjsonliteKEGGRESTlabelinglambda.rlatticelifecyclelme4magrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemgcvmicrobenchmarkmimeminqamodelrMultiAssayExperimentmunsellnlmenloptrnnetnumDerivopensslpbkrtestpillarpkgconfigplogrplyrpngpolynompurrrquantregR6rangerRColorBrewerRcppRcppEigenreshape2rlangRSQLiterstatixS4ArraysS4VectorsscalessnowSparseArraySparseMstringistringrSummarizedExperimentsurvivalsystibbletidyrtidyselectUCSC.utilsutf8vctrsviridisLitewithrXMLxtableXVectorzlibbioc

Getting Started with ClassifyR

Rendered fromClassifyR.Rmdusingknitr::rmarkdownon Dec 07 2024.

Last update: 2023-11-10
Started: 2014-08-22

ClassifyR Developer's Guide

Rendered fromDevelopersGuide.Rmdusingknitr::rmarkdownon Dec 07 2024.

Last update: 2022-11-17
Started: 2022-05-11

Readme and manuals

Help Manual

Help pageTopics
Asthma RNA Abundance and Patient Classesasthma classes measurements
List Available Feature Selection and Classification Approachesavailable
Various Functions for Evaluating Precision PathwaysbubblePlot bubblePlot.PrecisionPathways calcCostsAndPerformance flowchart flowchart.PrecisionPathways strataPlot strataPlot.PrecisionPathways summary.PrecisionPathways
Add Performance Calculations to a ClassifyResult Object or Calculate for a Pair of Factor VectorscalcCVperformance calcCVperformance,ClassifyResult-method calcExternalPerformance calcExternalPerformance,factor,factor-method calcExternalPerformance,factor,tabular-method calcExternalPerformance,Surv,numeric-method calcPerformance performanceTable
Container for Storing Classification ResultsactualOutcome actualOutcome,ClassifyResult-method allFeatureNames allFeatureNames,ClassifyResult-method chosenFeatureNames chosenFeatureNames,ClassifyResult-method ClassifyResult ClassifyResult,DataFrame,character,characterOrDataFrame-method ClassifyResult,DataFrame,character-method ClassifyResult-class features features,ClassifyResult-method finalModel finalModel,ClassifyResult-method models models,ClassifyResult-method performance performance,ClassifyResult-method predictions predictions,ClassifyResult-method sampleNames sampleNames,ClassifyResult-method show,ClassifyResult-method totalPredictions totalPredictions,ClassifyResult-method tunedParameters tunedParameters,ClassifyResult-method
A function to perform fast or standard Cox proportional hazard model tests.colCoxTests
A function to plot the output of the crissCrossValidate function.crissCrossPlot
A function to perform pairwise cross validationcrissCrossValidate
Cross-validation to evaluate classification performance.crossValidate crossValidate,data.frame-method crossValidate,DataFrame-method crossValidate,matrix-method crossValidate,MultiAssayExperiment-method, crossValidate,MultiAssayExperimentOrList-method predict.trainedByClassifyR train.data.frame train.DataFrame train.list train.matrix train.MultiAssayExperiment
Parameters for Cross-validation SpecificationCrossValParams CrossValParams-class
Get Frequencies of Feature Selection or Sample-wise Predictive Performancedistribution distribution,ClassifyResult-method
Convert a Two-column Matrix or Data Frame into a Hub Node ListedgesToHubNetworks
Container for Storing A Collection of SetsFeatureSetCollection FeatureSetCollection,list-method FeatureSetCollection-class length,FeatureSetCollection-method show,FeatureSetCollection-method [,FeatureSetCollection,numeric,missing,ANY-method [[,FeatureSetCollection,ANY,missing-method
Transform a Table of Feature Abundances into a Table of Feature Set Abundances.featureSetSummary featureSetSummary,DataFrame-method featureSetSummary,matrix-method featureSetSummary,MultiAssayExperiment-method
Human Reference InteractomeHuRI interactors
Convert Individual Features into Differences Between Binary Interactors Based on Known Sub-networksinteractorDifferences interactorDifferences,DataFrame-method interactorDifferences,matrix-method interactorDifferences,MultiAssayExperiment-method
METABRIC Clinical Dataclinical METABRICclinical
Parameters for Data Modelling SpecificationModellingParams ModellingParams-class
Plot Performance Measures for Various ClassificationsperformancePlot performancePlot,ClassifyResult-method performancePlot,list-method
Plot Density, Scatterplot, Parallel Plot or Bar Chart for Features By ClassplotFeatureClasses plotFeatureClasses,DataFrame-method plotFeatureClasses,matrix-method plotFeatureClasses,MultiAssayExperiment-method
Precision Pathways for Sample Prediction Based on Prediction Confidence.precisionPathwaysPredict precisionPathwaysPredict,PrecisionPathways,MultiAssayExperimentOrList-method precisionPathwaysTrain precisionPathwaysTrain,MultiAssayExperimentOrList-method
Parameters for Classifier PredictionPredictParams PredictParams,characterOrFunction-method PredictParams,missing-method PredictParams-class show,PredictParams-method
Convert Different Data Classes into DataFrame and Filter FeaturesprepareData prepareData,data.frame-method prepareData,DataFrame-method prepareData,list-method prepareData,matrix-method prepareData,MultiAssayExperiment-method
Plot Pair-wise Overlap of Ranked FeaturesrankingPlot rankingPlot,ClassifyResult-method rankingPlot,list-method
Plot Receiver Operating Curve Graphs for Classification ResultsROCplot ROCplot,ClassifyResult-method ROCplot,list-method
Perform a Single ClassificationrunTest runTest,DataFrame-method runTest,matrix-method runTest,MultiAssayExperiment-method
Reproducibly Run Various Kinds of Cross-ValidationrunTests runTests,DataFrame-method runTests,matrix-method runTests,MultiAssayExperiment-method
Plot a Grid of Sample-wise Predictive MetricssamplesMetricMap samplesMetricMap,ClassifyResult-method samplesMetricMap,list-method samplesMetricMap,matrix-method
Split Sample Indexes into Training and Test Partitions for Cross-validation Taking Into Account Classes.samplesSplits samplesSplits,CrossValParams-method samplesSplits,numeric-method splitsTestInfo
Plot Pair-wise Overlap, Variable Importance or Selection Size Distribution of Selected FeaturesselectionPlot selectionPlot,ClassifyResult-method selectionPlot,list-method
Parameters for Feature SelectionSelectParams SelectParams,characterOrList-method SelectParams,missing-method SelectParams-class show,SelectParams-method
Parameters for Classifier Trainingshow,TrainParams-method TrainParams TrainParams,characterOrFunction-method TrainParams,missing-method TrainParams-class
Parameters for Data Transformationshow,TransformParams-method TransformParams TransformParams,ANY-method TransformParams,character-method TransformParams-class