Package: CellNOptR 1.53.0

Attila Gabor

CellNOptR: Training of boolean logic models of signalling networks using prior knowledge networks and perturbation data

This package does optimisation of boolean logic networks of signalling pathways based on a previous knowledge network and a set of data upon perturbation of the nodes in the network.

Authors:Thomas Cokelaer [aut], Federica Eduati [aut], Aidan MacNamara [aut], S Schrier [ctb], Camille Terfve [aut], Enio Gjerga [ctb], Attila Gabor [cre]

CellNOptR_1.53.0.tar.gz
CellNOptR_1.53.0.zip(r-4.5)CellNOptR_1.53.0.zip(r-4.4)CellNOptR_1.53.0.zip(r-4.3)
CellNOptR_1.53.0.tgz(r-4.4-x86_64)CellNOptR_1.53.0.tgz(r-4.4-arm64)CellNOptR_1.53.0.tgz(r-4.3-x86_64)CellNOptR_1.53.0.tgz(r-4.3-arm64)
CellNOptR_1.53.0.tar.gz(r-4.5-noble)CellNOptR_1.53.0.tar.gz(r-4.4-noble)
CellNOptR_1.53.0.tgz(r-4.4-emscripten)CellNOptR_1.53.0.tgz(r-4.3-emscripten)
CellNOptR.pdf |CellNOptR.html
CellNOptR/json (API)
NEWS

# Install 'CellNOptR' in R:
install.packages('CellNOptR', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On BioConductor:CellNOptR-1.51.0(bioc 3.20)CellNOptR-1.50.0(bioc 3.19)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

cellbasedassayscellbiologyproteomicspathwaysnetworktimecourseimmunooncology

5.72 score 6 packages 98 scripts 294 downloads 81 exports 61 dependencies

Last updated 24 days agofrom:edc045a10a. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-win-x86_64NOTEOct 30 2024
R-4.5-linux-x86_64NOTEOct 30 2024
R-4.4-win-x86_64NOTEOct 30 2024
R-4.4-mac-x86_64NOTEOct 30 2024
R-4.4-mac-aarch64NOTEOct 30 2024
R-4.3-win-x86_64NOTEOct 30 2024
R-4.3-mac-x86_64NOTEOct 30 2024
R-4.3-mac-aarch64NOTEOct 30 2024

Exports:buildBitStringcheckSignalsCNOdataCNOlistCNORboolCNORwrapcompatCNOlistcompressModelcomputeScoreT1computeScoreTNcrossInhibitedDatacrossvalidateBooleancutAndPlotcutAndPlotResultsT1cutAndPlotResultsTNcutCNOlistcutModelcutNONCcutSimListdefaultParametersexhaustiveexpandGatesfindNONCgaBinaryT1gaBinaryTNgetCuesgetFitgetInhibitorsgetSignalsgetStimuligetTimepointsgetVariancesgraph2sifilpBinaryT1ilpBinaryT2ilpBinaryTNindexFindermakeCNOlistmapBackmodel2igraphmodel2sifnormaliseCNOlistplotplotCNOlistplotCNOlist2plotCNOlistLargeplotCNOlistLargePDFplotCNOlistPDFplotFitplotModelplotOptimResultsplotOptimResultsPanplotOptimResultsPDFprep4simprep4SimpreprocessingrandomizerandomizeCNOlistreadBNDreadBNETreadErrorsreadMIDASreadSBMLQualreadSifreadSIFresidualErrorsetSignals<-sif2graphsimulateT1simulateTNsimulatorT0simulatorT1simulatorTNtoSBMLwriteDotwriteErrorswriteMIDASwriteNetworkwriteReportwriteScaffoldwriteSIF

Dependencies:base64encBHBiocGenericsbitopsbslibcachemclicolorspacecpp11digestevaluatefansifarverfastmapfontawesomefsggplot2gluegraphgtablehighrhtmltoolsigraphisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigR6rappdirsRBGLRColorBrewerRCurlRgraphvizrlangrmarkdownsassscalesstringistringrtibbletinytexutf8vctrsviridisLitewithrxfunXMLyaml

Training of boolean logic models of signalling networks using prior knowledge networks and perturbation data with CellNOptR

Rendered fromCellNOptR-vignette.Rmdusingknitr::rmarkdownon Oct 30 2024.

Last update: 2022-03-22
Started: 2022-03-16

Readme and manuals

Help Manual

Help pageTopics
R version of CellNOptR, boolean featuresCellNOptR-package CellNOptR
Build a SIF table from a logic rule written in a stringbuild_sif_table_from_rule
Check the CNOlist and model matchingcheckSignals
Get data from a CellNOpt data repositoryCNOdata cnodata
Class '"CNOlist"'CNOlist CNOlist-class compatCNOlist,CNOlist-method getCues,CNOlist-method getInhibitors,CNOlist-method getSignals,CNOlist-method getStimuli,CNOlist-method getTimepoints,CNOlist-method getVariances,CNOlist-method length,CNOlist-method plot,CNOlist,CNOlist-method randomize,CNOlist-method readErrors,CNOlist-method setSignals<-,CNOlist-method writeErrors,CNOlist-method
List of CNOlist-class methodsCNOlist-methods compatCNOlist compatCNOlist,CNOlist getCues getCues,CNOlist getInhibitors getInhibitors,CNOlist getSignals getSignals,CNOlist getStimuli getStimuli,CNOlist getTimepoints getTimepoints,CNOlist getVariances getVariances,CNOlist getVariances,CNOlist,CNOlist-method length length,CNOlist length,CNOlist,ANY-method plot,CNOlist,CNOlist,CNOlist-method randomize randomize,CNOlist randomize,CNOlist,CNOlist-method readErrors readErrors,CNOlist setSignals<- setSignals<-,CNOlist setSignals<-,CNOlist,CNOlist-method writeErrors writeErrors,CNOlist
Data used for the DREAM3 challengeCNOlistDREAM
Toy dataCNOlistToy
Toy data with 2 time pointsCNOlistToy2
Simple Boolean analysis standaloneCNORbool
CNOR analysis wrapperCNORwrap
Compress a modelcompressModel
Compute the score of a model/data set using a bitString to cut the model.computeScoreT1
Compute the score at TN of a model/data set using a bitString to cut the model.computeScoreTN
Defining the set of binary variables for the ILP implementation of CellNOptR.create_binaries
Creating and running the ILP problem.createAndRunILP
Reading the optimal solutions as bitstrings.createILPBitstringAll
If an inhibitor is also a measured species, replace the data with NA (when inhibited)crossInhibitedData
k-fold crossvalidation for Boolean model.crossvalidateBoolean
Interface to cutAndPlotResults functions.cutAndPlot
Plot the results of an optimisation at t1cutAndPlotResultsT1
Plot the results of an optimisation at tNcutAndPlotResultsTN
Cut a CNOlist structure according to a modelcutCNOlist
Cut a model structure according to a bitstringcutModel
Cuts the non-observable/non-controllable species from the modelcutNONC
Cut a simList structure according to a bitstringcutSimList
Create a list of default parametersdefaultParameters
Exhaustive search over the optimisation of a PKN model on MIDAS data.exhaustive
Expand the gates of a modelexpandGates
Find the indexes of the non-observable and non controllable speciesfindNONC
Genetic algorithm used to optimise a modelgaBinaryT1
Genetic algorithm for time point NgaBinaryTN
Compute the score of a modelgetFit
Convert graph to SIFgraph2sif
ILP method used to optimise a modelilpBinaryT1
ILP method used to optimise a modelilpBinaryT2
ILP method used to optimise a modelilpBinaryTN
Finds the indices, in the model fields, of the species that are measured/inhibited/stimulatedindexFinder
List of CellNOptR internal functions.internals
Solving the ILP problem with CPLEX.invokeCPLEX
Model used for the DREAM3 challengeDreamModel
Make a CNOlist structuremakeCNOlist
Map an optimised model back onto the PKN model.mapBack
Convert a model object to a igraph objectmodel2igraph
Convert a model object in sif formatmodel2sif
Normalisation for boolean modelling.normaliseCNOlist
pknmodelpknmodel
plot a '"CNOlist"' object - methodsplot,CNOlist,ANY-method plot.CNOlist
Plot the data in a CNOlistplotCNOlist
Another version of plotCNOlist that allows to plot 2 cnolist in the same layout to compare them. This function uses ggplot2 library. It is recommended for small data sets (about 15 species).plotCNOlist2
Plot the data in a CNOlist, for lists with many conditions.plotCNOlistLarge
Plots a CNOlist into a pdf file, for lists with many conditions.plotCNOlistLargePDF
Plots a CNOlist into a pdf file.plotCNOlistPDF
Plot the evolution of an optimisationplotFit
Plot a modelplotModel
Plot the data and simulated valuesplotOptimResults
Plots the data and simulated values from any CellNOptR formalismplotOptimResultsPan
Plot the data and simulated values in a pdf fileplotOptimResultsPDF
Prepare a model for simulationprep4Sim prep4sim
Performs the pre-processing stepspreprocessing
add noise to the data contained in a CNOlist.randomizeCNOlist
Read network from BND filereadBND
Read network from BNET filereadBNET
Reads in a CSV MIDAS filereadMIDAS readMidas
Read a SBMLQual document and returns a SIF object (as returned by readSIGreadSBMLQual
Read a SIF file and create a model objectreadSIF readSif
Compute the residual error for a datasetresidualError
Convert sif to graphsif2graph
Cut and simulation of a boolean model at t1simulateTN
Simulation of a boolean modelsimulatorT0
Simulation of a boolean modelsimulatorT1
Simulation of a boolean model at any time points dependent on a previous one.simulatorTN
Export the network to SBML-qual formattoSBML
Toy modelToyModel
Toy modelToyModel2
Writing the set of boundaries for each integer variable for the ILP implementation of CellNOptR.write_bounds
Writing the set of constraints for the ILP implementation of CellNOptR.write_constraints
Write a model, and attached features, to a dot filewriteDot
Writing the ILP problem.writeFile
Write a CNOlist structure into a MIDAS filewriteMIDAS
Write a previous knowledge network model to a sif file (with attribute files), as well as a dot filewriteNetwork
Writing the objective function for the ILP implementation of CellNOptR.writeObjectiveFunction
Write a report of a CellNOptR analysiswriteReport
Writes the scaffold network to a sif file (with attributes) and to a dot filewriteScaffold
Convert a model into a SIF format and save the result in a file.writeSIF writeSif