Package: ttgsea 1.15.0

Dongmin Jung

ttgsea: Tokenizing Text of Gene Set Enrichment Analysis

Functional enrichment analysis methods such as gene set enrichment analysis (GSEA) have been widely used for analyzing gene expression data. GSEA is a powerful method to infer results of gene expression data at a level of gene sets by calculating enrichment scores for predefined sets of genes. GSEA depends on the availability and accuracy of gene sets. There are overlaps between terms of gene sets or categories because multiple terms may exist for a single biological process, and it can thus lead to redundancy within enriched terms. In other words, the sets of related terms are overlapping. Using deep learning, this pakage is aimed to predict enrichment scores for unique tokens or words from text in names of gene sets to resolve this overlapping set issue. Furthermore, we can coin a new term by combining tokens and find its enrichment score by predicting such a combined tokens.

Authors:Dongmin Jung [cre, aut]

ttgsea_1.15.0.tar.gz
ttgsea_1.15.0.zip(r-4.5)ttgsea_1.15.0.zip(r-4.4)ttgsea_1.15.0.zip(r-4.3)
ttgsea_1.15.0.tgz(r-4.5-any)ttgsea_1.15.0.tgz(r-4.4-any)ttgsea_1.15.0.tgz(r-4.3-any)
ttgsea_1.15.0.tar.gz(r-4.5-noble)ttgsea_1.15.0.tar.gz(r-4.4-noble)
ttgsea_1.15.0.tgz(r-4.4-emscripten)ttgsea_1.15.0.tgz(r-4.3-emscripten)
ttgsea.pdf |ttgsea.html
ttgsea/json (API)
NEWS

# Install 'ttgsea' in R:
install.packages('ttgsea', repos = c('https://bioc.r-universe.dev', 'https://cloud.r-project.org'))

On BioConductor:ttgsea-1.15.0(bioc 3.21)ttgsea-1.14.0(bioc 3.20)

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

softwaregeneexpressiongenesetenrichment

4.95 score 3 packages 3 scripts 190 downloads 9 exports 117 dependencies

Last updated 5 months agofrom:603fe2d3f9. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 02 2025
R-4.5-winOKMar 02 2025
R-4.5-macOKMar 02 2025
R-4.5-linuxOKMar 02 2025
R-4.4-winOKMar 02 2025
R-4.4-macOKMar 02 2025
R-4.3-winOKMar 02 2025
R-4.3-macOKMar 02 2025

Exports:bi_grubi_lstmfit_modelmetric_pearson_correlationplot_modelpredict_modelsampling_generatortext_tokentoken_vector

Dependencies:backportsbase64encBHbitbit64bslibcachemclicliprcolorspaceconfigcpp11crayondata.tableDiagrammeRdigestdplyrdttenglishevaluatefansifarverfastmapfastmatchfloatfontawesomefsgenericsglueherehighrhmshtmltoolshtmlwidgetshunspelligraphISOcodesjquerylibjsonlitekerasknitrkoRpuskoRpus.lang.enlabelinglatticelexiconlgrlifecyclemagrittrMatrixMatrixExtramemoisemgsubmimemlapimunsellNLPpillarpkgconfigpngprettyunitsprocessxprogresspspurrrqdapRegexquantedaR6rappdirsRColorBrewerRcppRcppArmadilloRcppTOMLreadrreticulateRhpcBLASctlrlangrmarkdownrprojrootrsparserstudioapisassscalesslamSnowballCstopwordsstringistringrsyllysylly.ensyuzhettensorflowtext2vectextcleantextshapetextstemtfautographtfrunstibbletidyrtidyselecttinytextmtokenizerstzdbutf8vctrsviridisLitevisNetworkvroomwhiskerwithrxfunxml2yamlzeallotzoo

Tokenizing Text of Gene Set Enrichment Analysis

Rendered fromttgsea.Rmdusingknitr::rmarkdownon Mar 02 2025.

Last update: 2022-11-12
Started: 2020-09-30